IEEE TRANSACTIONS ON MAGNETICS

A PUBLICATION OF THE IEEE MAGNETICS SOCIETY

JULY 2021 VOLUME 57 NUMBER 7 IEMGAQ (ISSN 0018-9464)
PART II OF TWO PARTS

THz generation using SOT SOT memristor SOTs with domain walls/skyrmions SOT nano-oscillators

Overview of the Roadmap of Spin-Orbit Torques. From the paper, "Roadmap of Spin-Orbit Torques," by Q. Shao, P. Li, L. Liu, H. Yang, S. Fukami, A. Razavi, H. Wu, K. Wang, F. Freimuth, Y. Mokrousov, M. D. Stiles, S. Emori, A. Hoffmann, J. Åkerman, K. Roy, J.-P. Wang, S.-H. Yang, K. Garello, and W. Zhang, Art. no. 800439.

Autors Autors Autors Autors Astract Alexander and	IEEE Xplore® Browse	My Settings	Help	Institutional Sign In
Journals & Magazines > IEEE Transactions on Magnetics > Volume: 57 Issue: 7 Apple Fabrication of 2-D Magnetic Microstructures by Laser Direct Publisher: IEEE Cite This Image: Proper Structure Por Alaa Alasadi ; F. Claeyssens; D. A. Allwood All Authors Image: Proper Structure 197 Full Por Abstract Abstract: Document Sections A 2-D permalloy (Ni81Fe19) microstructures have been patterned using laser direct writin were designed and fabricated in a single-step process using scanning stage system base 1. Introduction This process was implemented under atmospheric conditions and room temperature by reby laser. The 2-D magnetic structures included: nanowire array. These elements exhibited with the increase in shape aspect ratio. The average fabrication time per element was 15-varied between 5-20 µm/s, and a laser repetition rate of 6 kHz. This demonstration of flex processing being applied to magnetic microstructures may assist in prototyping and rapid sensors and magnetic wires for interactions with biological cells. Authors Published in: IEEE Transactions on Magnetics (Volume: 57, Issue: 7, July 2021) Figures Article Sequence Number: 2300306 DOI: 10.1109/TMAG.2022 References Date of Publication: 10 May 2021 Publisher: IEEE ISSN Information: Funding Agency: Structions	AI			ADVANCED SEARCH
Alaa Alasadi ; F. Claeyssens; D. A. Allwood All Authors 1 197 Full Full Paper Full Document Sections Abstract: Document Sections A 2-D permalloy (Ni81Fe19) microstructures have been patterned using laser direct writin were designed and fabricated in a single-step process using scanning stage system base L Introduction A 2-D permalloy (Ni81Fe19) microstructures have been patterned using laser direct writin were designed and fabricated in a single-step process using scanning stage system base L Introduction by laser. The 2-D magnetic structures included: nanowire array. These elements exhibited with the increase in shape aspect ratio. The average fabrication time per element was 15-varied between 5–20 µm/s, and a laser repetition rate of 6 kHz. This demonstration of flex processing being applied to magnetic wires for interactions with biological cells Authors Published in: IEEE Transactions on Magnetics (Volume: 57, Issue: 7, July 2021) Figures Article Sequence Number: 2300306 DOI: 10.1109/TMAG.2022 References Date of Publication: 10 May 2021 Publisher: IEEE Citations Funding Agency: SSN Information:	Journals & Magazines > IEEE Tran	sactions on Magnetics >	Volume: 57 Issue: 7	
Publisher: IEEE Cite mis PDF Alaa Alasadi ; F. Claeyssens ; D. A. Allwood All Authors 1 197 Full Paper Full Pormalioy (Ni81Fe19) microstructures have been patterned using laser direct writin were designed and fabricated in a single-step process using scanning stage system base 1 Introduction This process was implemented under atmospheric conditions and room temperature by re by laser. The 2-D magnetic structures included: nanowire array. These elements exhibited with the increase in shape aspect ratio. The average fabrication time per element was 15-varied between 5–20 µm/s, and a laser repetition rate of 6 kHz. This demonstration of flex processing being applied to magnetic microstructures may assist in prototyping and rapid sensors and magnetic wires for interactions with biological cells Authors Published in: IEEE Transactions on Magnetics (Volume: 57, Issue: 7, July 2021) Figures Article Sequence Number: 2300306 DOI: 10.1109/TMAG.2022 References Date of Publication: 10 May 2021 Publisher: IEEE Citations ISSN Information: ISSN Information: Metrics Funding Agency: Funding Agency:	Rapid Fabricatio	n of 2-D Ma	anetic Micros	tructures by Laser Direc
Alaa Alasadi ; F. Claeyssens; D. A. Allwood All Authors 1 197 Fuil Fuil Paper Pathet Views Abstract Abstract: Document Sections A 2-D permalloy (Ni81Fe19) microstructures have been patterned using laser direct writin were designed and fabricated in a single-step process using scanning stage system base I. Introduction This process was implemented under atmospheric conditions and room temperature by re by laser. The 2-D magnetic structures included: nanowire array. These elements exhibited with the increase in shape aspect ratio. The average fabrication time per element was 15-varied between 5-20 µm/s, and a laser repetition rate of 6 kHz. This demonstration of flew processing being applied to magnetic microstructures may assist in prototyping and rapid scrussing being applied to magnetics (Volume: 57, Issue: 7, July 2021) Figures Article Sequence Number: 2300306 DOI: 10.1109/TMAG.2027 References Date of Publication: 10 May 2021 Publisher: IEEE Citations Funding Agency: SSN Information:	Publisher: IEEE Cite This	PDF	5	
AbstractAbstract:Document SectionsA 2-D permalloy (Ni81Fe19) microstructures have been patterned using laser direct writin were designed and fabricated in a single-step process using scanning stage system baseI. IntroductionThis process was implemented under atmospheric conditions and room temperature by re by laser. The 2-D magnetic structures included: nanowire array. These elements exhibited with the increase in shape aspect ratio. The average fabrication time per element was 15- varied between 5–20 µm/s, and a laser repetition rate of 6 kHz. This demonstration of flex processing being applied to magnetic microstructures may assist in prototyping and rapid sensors and magnetic wires for interactions with biological cellsAuthorsPublished in: IEEE Transactions on Magnetics (Volume: 57, Issue: 7, July 2021)FiguresArticle Sequence Number: 2300306ReferencesDate of Publication: 10 May 2021VerticsFunding Agency:	Alaa Alasadi ; F. Claeyssen 1 Cites in Paper 197 Full Text Views	s ; D. A. Allwood All	Authors	
Document SectionsA 2-D permalloy (Ni81Fe19) microstructures have been patterned using laser direct writir were designed and fabricated in a single-step process using scanning stage system base This process was implemented under atmospheric conditions and room temperature by re by laser. The 2-D magnetic structures included: nanowire array. These elements exhibited with the increase in shape aspect ratio. The average fabrication time per element was 15- varied between 5–20 µm/s, and a laser repetition rate of 6 kHz. This demonstration of flex processing being applied to magnetic microstructures may assist in prototyping and rapid sensors and magnetic wires for interactions with biological cellsAuthorsPublished in: IEEE Transactions on Magnetics (Volume: 57, Issue: 7, July 2021)FiguresArticle Sequence Number: 2300306DOI: 10.1109/TMAG.2027ReferencesDate of Publication: 10 May 2021Publisher: IEEEKeywordsISSN Information: Funding Agency:Funding Agency:	Abstract	Abstract:		
I. IntroductionThis process was implemented under atmospheric conditions and room temperature by re by laser. The 2-D magnetic structures included: nanowire array. These elements exhibited with the increase in shape aspect ratio. The average fabrication time per element was 15- varied between 5–20 µm/s, and a laser repetition rate of 6 kHz. This demonstration of flex processing being applied to magnetic microstructures may assist in prototyping and rapid sensors and magnetic wires for interactions with biological cellsAuthorsPublished in: IEEE Transactions on Magnetics (Volume: 57, Issue: 7, July 2021)FiguresArticle Sequence Number: 2300306DOI: 10.1109/TMAG.2027ReferencesDate of Publication: 10 May 2021Publisher: IEEEKeywordsISSN Information: Funding Agency:Funding Agency:	Document Sections	A 2-D permalloy (were designed and	Ni81Fe19) microstructures d fabricated in a single-ste	3 have been patterned using laser direct writin op process using scanning stage system based
II. Experimentalby laser. The 2-D magnetic structures included: nanowire array. These elements exhibited with the increase in shape aspect ratio. The average fabrication time per element was 15- varied between 5–20 µm/s, and a laser repetition rate of 6 kHz. This demonstration of flex processing being applied to magnetic microstructures may assist in prototyping and rapid sensors and magnetic wires for interactions with biological cellsAuthorsPublished in: IEEE Transactions on Magnetics (Volume: 57 , Issue: 7, July 2021)FiguresArticle Sequence Number: 2300306DOI: 10.1109/TMAG.2021ReferencesDate of Publication: 10 May 2021Publisher: IEEEKeywordsISSN Information: Funding Agency:Funding Agency:	I. Introduction	This process was	implemented under atmos	pheric conditions and room temperature by re
III. Results and Discussionvaried between 5–20 μm/s, and a laser repetition rate of 6 kHz. This demonstration of flex processing being applied to magnetic microstructures may assist in prototyping and rapid sensors and magnetic wires for interactions with biological cellsAuthorsPublished in: IEEE Transactions on Magnetics (Volume: 57, Issue: 7, July 2021)FiguresArticle Sequence Number: 2300306DOI: 10.1109/TMAG.2027CitationsDate of Publication: 10 May 2021Publisher: IEEEKeywordsISSN Information:Funding Agency:	II. Experimental	by laser. The 2-D with the increase i	magnetic structures includent in shape aspect ratio. The a	average fabrication time per element was 15-
IV. Conclusionprocessing being applied to magnetic microstructures may assist in prototyping and rapid sensors and magnetic wires for interactions with biological cellsAuthorsPublished in: IEEE Transactions on Magnetics (Volume: 57, Issue: 7, July 2021)FiguresArticle Sequence Number: 2300306DOI: 10.1109/TMAG.2027ReferencesDate of Publication: 10 May 2021Publisher: IEEEKeywordsISSN Information:Funding Agency:	III. Results and Discussion	varied between 5-	-20 µm/s, and a laser repet	tition rate of 6 kHz. This demonstration of flexi
AuthorsPublished in: IEEE Transactions on Magnetics (Volume: 57, July 2021)FiguresArticle Sequence Number: 2300306DOI: 10.1109/TMAG.2027ReferencesDate of Publication: 10 May 2021Publisher: IEEEKeywordsISSN Information:ISSN Information:MetricsFunding Agency:ISSN Information:	IV. Conclusion	sensors and magr	netic wires for interactions	with biological cells
FiguresReferencesArticle Sequence Number: 2300306DOI: 10.1109/TMAG.2027CitationsDate of Publication: 10 May 2021Publisher: IEEEKeywordsISSN Information:Funding Agency:	Authors	Published in: IEE	EE Transactions on Magne	etics (Volume: 57 , Issue: 7, July 2021)
ReferencesArticle Sequence Number: 2300306DOI: 10.1109/TMAG.2027CitationsDate of Publication: 10 May 2021Publisher: IEEEKeywordsISSN Information:Funding Agency:	Figures			
Citations Date of Publication: 10 May 2021 Publisher: IEEE Keywords ISSN Information: Metrics Funding Agency:	References	Article Sequence	number: 2300306	DOI: 10.1109/TMAG.2021
Keywords ISSN Information: Metrics Funding Agency:	Citations	Date of Publicati	on: 10 May 2021	Publisher: IEEE
Metrics Funding Agency:	Keywords	ISSN Information	:	
	Metrics	Funding Agency	:	
				Sign in to Continue Reading

Authors

Figures

References

Citations

Keywords

ect Writing (LDW)

rriting (LDW). The magnetic structures ased on A3200 software from a thin film. by removing unwanted areas of thin film bited shape-sensitive magnetic behavior 15–120 min at the scan speed was flexibility and speed of laser direct write pid manufacture of devices such as

2021.3078474

More Like This

Magnetic thin-film magnetometers for magnetic-field measurement IEEE Transactions on Magnetics Published: 1972

Comparison of Synthetic Antiferromagnets and Hard Ferromagnets as Reference Layer in Magnetic Tunnel Junctions With Perpendicular Magnetic Anisotropy IEEE Magnetics Letters Published: 2010

Show More