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Abstract: Water-in-diesel (W/D) emulsion fuel is a potentially viable diesel fuel that can simultane-
ously enhance engine performance and reduce exhaust emissions in a current diesel engine without
requiring engine modifications or incurring additional costs. In a consistent manner, the current study
examines the impact of adding water, in the range of 5–30% wt. (5% increment) and 2% surfactant of
polysorbate 20, on the performance in terms of brake torque (BT) and exhaust emissions of a four-
cylinder four-stroke diesel engine. The relationship between independent factors, including water
addition and engine speed, and dependent factors, including different exhaust released emissions and
BT, was initially generated using machine learning support vector regression (SVR). Subsequently, a
robust and modern optimization of the sea-horse optimizer (SHO) was run through the SVR model
to find the optimal water addition and engine speed for improving the BT and lowering exhaust
emissions. Furthermore, the SVR model was compared to the artificial neural network (ANN) model
in terms of R-squared and mean square error (MSE). According to the experimental results, the BT
was boosted by 3.34% compared to pure diesel at 5% water addition. The highest reduction in carbon
monoxide (CO) and unburned hydrocarbon (UHC) was 9.57% and 15.63%, respectively, at 15% of
water addition compared to diesel fuel. The nitrogen oxides (NOx) emissions from emulsified fuel
were significantly lower than those from pure diesel, with a maximum decrease of 67.14% at 30%
water addition. The suggested SVR-SHO model demonstrated superior prediction reliability, with a
significant R-Squared of more than 0.98 and a low MSE of less than 0.003. The SHO revealed that
adding 15% water to the W/D emulsion fuel at an engine speed of 1848 rpm yielded the optimum
BT, CO, UHC, and NOx values of 49.5 N.m, 0.5%, 57 ppm, and 369 ppm, respectively. Finally, these
outcomes have important implications for the potential of the SVR-SHO approach to minimize engine
exhaust emissions while maximizing engine performance.

Keywords: water/diesel emulsion; optimization; machine learning; diesel engine; regression; exhaust
emission; engine performance

1. Introduction

Addressing global warming and climate change requires improved engine fuel com-
bustion and the minimization of exhaust emissions. Fuel additives effectively improve fuel
characteristics and reduce exhaust engine emissions [1–6]. The addition of water to diesel
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fuel has received much attention among the numerous fuel additives studied because of its
extraordinary effects on lowering nitrogen oxides (NOx) emissions. The principal mecha-
nism underlying the reduction in NOx emission appears to be a drop in the adiabatic flame
temperature due to liquid water evaporation and subsequent dilution of the gas phase
species. It is well known that water can reduce the temperature of the cylinder chamber
by absorbing the latent vaporization heat [7,8]. Furthermore, the increased specific heat of
water lowered the cylinder temperature. A longer ignition delay caused by the addition
of water enables better mixing and lowers the soot production rate [9]. Another impor-
tant combustion property of water-in-diesel (W/D) emulsion fuel is its micro-explosion
behavior, which results in smaller fuel droplets after secondary atomization and better
combustion efficiency. There are many methods for introducing water into the combustion
chamber [10]: (a) injection of liquid or vapor water into the intake air, (b) simultaneous
water and diesel injections, and (c) W/D emulsion fuel with or without surfactants. The
first two water injection techniques incur extra costs for the water injection system and
engine corrosion concerns [11]. However, the third approach has been recognized as the
most effective strategy with no additional cost and engine modification required for NOx
reduction [12].

1.1. Literature Review on Emulsion Diesel Fuel

Several experiments have been conducted to explore the behavior of diesel engines
driven by emulsified fuels. Yang et al. [13] observed that adding 15% water to diesel fuel
reduced NOx emissions by 30% at full load at 3200 rpm engine speed, with insignificant
increases in brake-specific fuel consumption (BSFC). In contrast to the previous experiments,
Liang et al. [14] reported that using a W/D containing 30% water boosted BSFC by 12%.
Sudrajad et al. [15] tested a compression ignition (CI) engine operating at a constant
speed with various engine loads and fueled by an emulsion fuel comprising 10% water,
1% surfactant, and 89% diesel fuel. Compared to pure diesel fuel, the results showed a
reduction in engine emissions such as NOx, carbon monoxide (CO), and sulfur dioxide
(SO2). Mazlan et al. [16] investigated the effects of different water addition amounts
(5%, 6.5%, 10.8%, and 30%) on the CI engine performance and exhaust emissions of non-
surfactant W/D emulsion fuel. The authors demonstrated that the emulsion fuel with a
water content of 6.5% exhibited the lowest fuel consumption and the highest average NOx
reduction. Gonguntla et al. [17] operated a single-cylinder CI engine using a W/D emulsion
fuel comprising 6% water content. The findings revealed a 24% decrease in NOx and a
42% decrease in CO emissions compared to pure diesel. Furthermore, employing W/D
emulsion fuel increased the BSFC by 6.6%. Elsanusi et al. [18] investigated the performance
and emissions of a diesel engine using water (5–15% vol.) and biodiesel (0–40%). They
observed that W/D with 15% water and 20% biodiesel had the maximum brake thermal
efficiency (BTE) under a full load. Furthermore, increasing the water content of the W/D
emulsion fuels dramatically decreased NOx emissions. Ali et al. [19] examined the impact
of W/D emulsion fuels on CI engine performance and exhaust emissions, concluding
that the water content in W/D emulsion fuels containing 10% or less water could be
deemed optimal and that W/D emulsion fuel decreased NOx and particulate matter (PM)
emissions. Ithnin et al. [20] evaluated four kinds of W/D emulsion fuels, including water
in concentrations ranging from 5% to 20% by volume and pure diesel fuel as a baseline.
The results revealed that all the W/D blends reduced NOx and PM compared to pure
diesel. However, the CO and carbon dioxide (CO2) emissions increased at low and high
loads compared to pure diesel fuel. Yang et al. [21] powered the CI engine using emulsified
gasoline with organic additives. They observed that NOx decreased by 30.6%, but CO and
HC increased insignificantly. Nour et al. [22] introduced water into the exhaust manifold
and opened the exhaust valve during the suction stroke, allowing hot exhaust gases to
evaporate water and minimize NOx and soot. They reduced NOx by 85% and soot by 40%
while increasing the in-cylinder pressure by 11% compared to exhaust gas recirculation
(EGR) without water injection. Choi and Lee [23] found that a W/D comprising 16%
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water addition resulted in a lower combustion temperature and decreased NOx and black
carbon rates by approximately 60% and 15%, respectively. Attia et al. [24] reported that
emulsions containing large water droplets (5.5 µm) reduced NOx emissions by 25%. In
comparison, adding tiny water droplets (0.53 µm) to the emulsion reduces smoke and
unburned hydrocarbon (UHC) by 80% and 35%, respectively. Lin et al. [25] found that
applying W/D emulsion fuel increased CO while decreasing NOx emissions.

1.2. Literature Review on Optimization Methods for Diesel Engine Behavior

Experiments have been conducted to determine the influence of W/D emulsion un-
der various operating situations and to achieve the maximum engine performance while
emitting the lowest exhaust pollutants. Since these experimental studies are expensive,
restricted in scope, and time-consuming, more efficient procedures are required. Using op-
timization methods to reduce the requirement for extensive experimental testing is a useful
approach [26]. Many researchers have developed and used a wide range of meta-heuristic
algorithm optimization methodologies in design analysis, such as genetic algorithm op-
timization, particle swarm optimization (PSO), whale optimization algorithm (WOA),
response surface methodology (RSM), artificial neural network (ANN), Taguchi optimiza-
tion, grey wolf optimization (GWO), and intelligent grey wolf optimization (IGWO) [27–31].
According to Hoseini and Sobati [32], the optimal formulation for the W/D emulsion diesel
fuel was 5% water and 2% surfactant after applying multi-objective optimization. The
optimal W/D emulsion fuel significantly reduced NOx (−18.24%) compared to regular
diesel fuel. Vellaiyan et al. [33] analyzed a single-cylinder diesel CI engine using W/D
fuels with varying water content using the Taguchi technique and L16 orthogonal array
design. The results demonstrated that proper parametric settings substantially enhanced
combustion, engine performance, and exhaust emissions. Furthermore, Vellaiyan et al. [34]
developed a multi-purpose optimization technique for water–biodiesel emulsion fuel with
nano additives. The findings showed that the quantity of water in the emulsion exhibited
the most significant influence on the performance and exhaust emissions of the CI engine.
Khathri et al. [35] employed the RSM technique to improve the performance and minimize
the exhaust pollutants of a CI engine driven by W/D emulsion fuel with water contents of
5% and 10% by volume. The results revealed that the optimal engine operating settings
were 5% water content, 50% load, and an engine speed of 2446 rpm, while the optimum
performance and emissions parameters were brake torque (BT) of 103.7 N.m., brake power
(BP) of 26.3 kW, brake thermal efficiency of 43.8%, NOx of 521.8 ppm, and CO of 3.1%.
Kumar et al. [36] utilized the ANN-PSO approach to determine the best parameters for
producing W/D emulsion fuels for diesel engines. The estimated optimized settings were a
W/D emulsion fuel with 20% water, 0.9% surfactant, and 2200 rpm of stirrer for separation
processes of 14.33% in one day, with a range of 6.54%.

1.3. Research Gap, Objectives, and Novelty

Although there are numerous articles on the performance, combustion, and emission
characteristics of emulsion diesel fuels, there are few studies on the optimal addition of
water to minimize exhaust emissions while improving engine performance. Therefore,
identifying the optimum potential combination that enhances engine performance neces-
sitates performing trials for all test setups, and mixtures at different amounts are tedious
and costly. Instead, the previous concerns can be solved using various optimization tech-
niques, enabling the optimal blending percentage to be selected, leading to the highest
engine performance and lowest exhaust emissions. There are no published studies on
the use of nonlinear regression with the sea-horse optimizer (SHO) to reduce CI engine
exhaust emissions and improve performance. This study introduces a prediction frame-
work based on machine learning support vector regression (SVR) and an innovative swarm
intelligence-based metaheuristic, termed the sea-horse optimizer (SHO), which is inspired
by the natural mobility, predation, and breeding activities of sea horses. A supervised
machine learning model and a learning technique that analyzes data for regression analysis
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(SVR) were used in the proposed framework to evaluate the link between the indepen-
dent factors, including engine speed and water addition%, and the dependent variables,
including engine performance in terms of BT and exhaust emissions, which included NOx,
UHC, and CO. Subsequently, the SHO technique was utilized to optimize the output of the
prediction model by updating the population’s current locations in the discrete searching
space, obtaining the best engine speed and water addition% for the maximum BT and the
least amount of NOx, UHC, and CO. According to the best of the authors’ knowledge,
no studies have used the most recent optimization approaches, such as SHO, for assess-
ing, optimizing, and enhancing the performance of CI engines driven by W/D emulsion
blends with various water additions. Additionally, the present investigation organized
and conducted its virtual experiments using the design of experiments (DOE). Accuracy
evaluation is a vital part of any machine learning model. The mean squared error (MSE)
and coefficient of determination (R2) were used to evaluate the model’s effectiveness in the
regression analysis. The expected and realized experimental outcomes are then compared.
Furthermore, the SVR model was compared to the artificial neural network (ANN) model
in terms of R-squared and MSE. Finally, the optimization of engine exhaust emissions
and performance was achieved by comparing the performance of SHO with other meta-
heuristic optimization techniques using the Whale Optimization Algorithm (WOA) as a
reference. It is worth noting that the SHO approach has effectively handled a variety of
difficulties, including numerical challenges with numerous modes and dimensions. The
SHO method has many benefits over other meta-heuristic techniques, including ease of use,
flexibility, stability, fewer parameters, and improved algorithm performance. Therefore,
SHO can replace various standard metaheuristics, such as GWO, PSO, WOA, and other
optimizer methods. This is because of its large optimization capacity and low computing
cost. This happens because, in early iterations, sea horses tend to use the Brownian motion
of floating action and offspring renewal to find the best answer across the entire search
space. In later iterations, sea horses used spiral motion and a successful predation stage to
find the best response.

2. Engine Test, Experimental Methods, Modeling, and Optimization

A single-cylinder water-cooled CI engine was used to assess the engine performance
and exhaust emission behavior when fueled by W/D emulsion fuels. Table 1 lists the
technical specifications of the diesel engine used. The emulsion was prepared using a
1500-rpm blender. W/D emulsion combinations with 5–30% volumetric water percentages
were prepared. To stabilize the W/D emulsions, a surfactant of Tween 20 was used at
2% volume. The process for creating W/D emulsion fuels involves two stages using a
homogenizer emulsification device. In the first stage, Tween 20 surfactant is mixed with
diesel fuel. Subsequently, a set amount of water was slowly added to the mixture, while it
was agitated at 800 rpm for 5 min, resulting in the formation of pre-emulsions. In the second
stage, these pre-emulsions were mixed at a high speed of 5000 rpm for 20 min [37]. The
most stable fuel was found to be the 5% W/D emulsion fuel, and all emulsion fuel blends
were found to be stable for at least 20 days without any separation. The W/D emulsion’s
fuel density, viscosity, and calorific value were measured, as displayed in Table 2. For
assessing all the W/D emulsion fuel mixes, pure diesel was used as a baseline.

Table 1. Diesel engine specifications.

Parameter Diesel Engine Specifications

Engine description Automotive 30 test bed, 4-cylinders, 4-strokes, Direct
injection, Naturally aspirated, Water cooled

Bore × Stroke 72.25 × 88.18 mm

Swept volume 1450 cc

Compression ratio 21.5:1
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Table 2. Properties of different blends of W/D emulsion fuels.

Properties
Pure

Diesel

Water Addition Test
Method Equipment Accuracy Error5% 10% 15% 20% 25% 30%

Calorific Value
(MJ/kg) 43.2 42.56 41.76 38.92 37.6 33.86 31.77 ASTM

D240
Automatic adiabatic

bomb calorimeter
±0.04
MJ/kg ±0.1%

Density @ 15 ◦C
(kg/m3) 0.838 0.851 0.855 0.858 0.862 0.868 0.879 IP

190/93
Capillary stoppered

pycnometer
±10−3

g/cm3 ±0.12%

Viscosity at 20 ◦C
(Centi-Poise) 4 8 17 43 38 21 18 ASTM

D445
EMILA rotary

viscometer apparatus ±0.1 cP ±2.6%

2.1. Engine Performance Measurements

The experiment used a diesel engine connected to a 400 V DC compound wound
dynamometer that only absorbed power. The engine was able to reach a maximum speed of
3000 rpm; however, with the use of a belt reduction drive, it could reach 5000 rpm. The belt
drive was chosen because it has low friction and hysteresis losses, and it does not require
a flexible connection to handle shaft misalignment. The torque measurement accuracy
was ±0.1 N.m, and the rotational speed accuracy was ±1 rev./min. All engine parameters
were evaluated at full load and various speeds. The test procedure for the CI engine was
as follows: The engine was warmed up with pure diesel for approximately 10 min until
it reached steady-state conditions, and the lubricating oil temperature was maintained
between 80 and 90 ◦C. The throttle was set to wide-open throttle (WOT), and a braking
load was applied. Once these conditions were reached, the engine was brought to the
required test condition and allowed to run for at least two minutes before collecting data.
This time frame was designed to ensure consistent and repeatable operating conditions
for the engine, and to provide sufficient time for the engine to stabilize and reach a steady
state before collecting data. Then, readings of brake torque, temperatures, rotational speed,
fuel weight, and intake volume flow rate were collected and recorded. This procedure was
repeated for different W/D emulsion fuels. Before testing, the CI engine and dynamometer
were calibrated and set to their default settings. Once the engine stabilized, all data were
recorded. Each fuel was tested three times, and the data were averaged. The average time
period allowed after experimental recording for an emulsion diesel test was approximately
5 to 10 min. This time frame has been determined to be sufficient to allow the engine
to return to normal operating conditions and to enable the engine to cool down, thereby
ensuring accurate and reliable results.

It is worth mentioning that the fuel system was designed to provide a consistent and
reliable flow of fuel to the engine in accordance with its operating conditions. The fuel
delivery system is typically comprised of a fuel tank, a fuel pump, fuel injectors, and a
control system to regulate the flow of fuel to the engine. The fuel tank was mounted on
top of the overhead frame and has a capacity of 30 L. Fuel measurements were taken using
a calibrated pipette gauge with two bulbs. The fuel delivery system was monitored and
regulated based on factors such as engine speed, load, and temperature to ensure optimal
performance.

2.2. Exhaust Emission Measurement

The exhaust emissions were measured using a Kane automotive gas analyzer. The
emissions were tested by attaching a gas probe to the exhaust pipe and then analyzing
the exhaust emissions. It is worth noting that the backpressure was avoided by installing
an exhaust duct with a diameter of 40 to 50 mm to discharge exhaust gases [38]. The gas
analyzer was turned on, and the emission sensors were filled with fresh air. The oxygen
sensor was programmed to be 20.9%. During air flow filtering, the time runs down to
zero, and the analyzer performs a self-calibration operation. Following the self-calibration,
a leak test was performed by attaching a probing seal. The probing seal was eliminated
immediately after the leakage test, and the gas analyzer reported zero for CO and CO2
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and set O2 at 20.9%. The exhaust emission data were collected after the engine achieved
working temperature. Each test was performed three times, and the average of the recorded
results was calculated. Table 3 lists the specifications and accuracies of the gas analyzer
equipment.

Table 3. Gas analyzer technical specification.

Emission Test Method Accuracy Resolution Maximum Limit

CO2 ND-IR * ±5% of reading 0.01% 16%
CO ND-IR ±5% of reading 0.01% 10%

UHC ND-IR ±5% of reading 1 ppm 5000
NOx FC ** 0–4000 ppm ±4%; 1 ppm 5000

* ND-IR: Nondispersive infrared; ** FC: Fuel cell.

The exhaust emission uncertainty% was calculated using the following formula [29,39]:

% of uncertainty = ±

√√√√√
{
(uncertainty of HC)2 + (uncertainty of O2)

2 + (uncertainty of CO2)
2

+(uncertainty of CO)2 + (uncertainty of NOx)
2
} (1)

The overall uncertainty of the exhaust gases in Equation (1) was 1.1%, indicating that
the analyzed data were reliable.

2.3. Modeling: Support Vector Regression (SVR)

The support vector machine (SVM) approach, initially proposed by Vapnik [40], has
been widely acknowledged as a significant and practical method for regression and classifi-
cation. Support vector regression (SVR) is a subset of SVM that addresses regression issues
and function estimation. SVR has been employed in many different industries and has
experienced significant progress because of its benefits of straightforward structure and
simple implementation. Compared to other AI methods, the computational complexity
of SVR is determined by the number of support vectors rather than the dimensions of
the input data, which avoids the “dimension curse” and reduces the computational cost.
Furthermore, SVR is more resistant to noisy data than other advanced machine learning
algorithms, such as an artificial neural network (ANN). Therefore, it can effectively use
targets with small and medium sample sizes. Moreover, the kind and number of parameters
are critical challenges with artificial intelligent (AI) algorithms. For SVR, the kernel function
is a parameter that affects accuracy, while for ANN, the most important parameters are
the number of layers, their size, the number of training epochs, and the learning rate. In
addition, the initial randomization of a network’s weight matrix impacts its performance.
This is because the accuracy of the neural networks never exceeds a certain threshold if
the initial randomization places them close to a local optimization function minimum.
However, SVRs are more reliable, and continuously ensure convergence to the global
minimum. SVR is a superior option for this task when all of the aforementioned parameters
are considered, as well as our training data.

For a non-linear task, the kernel function is used to convert a nonlinear problem with
low dimensions into a linear problem with high dimensions, as expressed in Equation (2).

f (x) = ωϕ(x) + b (2)

where f(x) is a mapping function (dependent variable), x represents an n-dimensional input
(independent variable),ω and b are the weight and constant coefficients, respectively, and
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ϕ(x) denotes the kernel function in the feature space. By minimizing the regularized risk
function, the coefficients ω and b can be estimated by Equation (3):

min 1
2‖ω‖

2 + c
n

n
∑

i=1
ε(yi − f (xi))

s.t ε(yi − f (xi)) =

{
0 |yi − f (x)| ≤ ε

|yi − f (x)| − ε otherwise

(3)

where C denotes the penalty factor which aids in balancing the amount of confidence with
the empirical risk. The intense loss parameter is represented by ε, and ε(yi − f (xi)) stands
the insensitive loss function. Consequently, the optimization problem is simplified by the
inclusion of two non-negative slack variables, ξi and ξ∗i , as presented in Equation (4).

minω,ξ,ξ∗
1
2‖ω‖

2 + C
n
∑

i=1

(
ξi + ξ∗i

)
s.t.


ωϕ(x) + b− yi ≤ ε + ξi
yi −ωϕ(x)− b ≤ ε + ξ∗i

ξi, ξ∗i ≥ 0
, f or i = 1, 2, . . . , n

(4)

The optimization task mentioned in Equation (4) is transformed into a dual optimiza-
tion problem using Lagrangian multipliers, as illustrated in Equation (5):

min 1
2

n
∑

i,j=1

(
α∗i − αi

)
(α∗j − αj)k

(
xi.xj

)
+ ε

n
∑

i=1

(
α∗i + αi

)
−

n
∑

i=1
yi
(
α∗i − αi

)
s.t.


l

∑
i=1

(
α∗i − αi

)
= 0, f or i = 1, 2, . . . , n

0 ≤ α∗i , αi ≤ C

(5)

where the kernel function is k
(
xi.xj

)
, and α∗i , αi represents the Lagrangian multipliers. In

that case, the following Equation (6) was utilized to calculate f(x) support vector regression.

f (x) =
n

∑
i=1

(αi − α∗i )k(xi, x) + b (6)

The kernel function is the most crucial component of the SVR. It transforms a nonlinear
problem into a linear problem by projecting the initial low-dimensional data into a higher-
dimensional data space [41]. In this study for modeling, the ANOVA radial basis kernel is
used because it performs well in multidimensional regression problems [42], as shown in
Equation (7). Moreover, the features they employed and how they are weighted are largely
controlled by the kernel. In particular, the polynomial kernel can only utilize degree d
monomials with a single parameter weighting scheme. The all-subsets kernel can only be
used if all of the monomials that map to conceivable subsets of the x input space features
are used. However, the set of monomials can be specified with more freedom using the
ANOVA radial basis kernel.

k
(
xi, xj

)
=

n

∑
k=1

exp
(
−σ
(

xk
i − xk

j

)2
)d

(7)

where σ is a tuning parameter, and d is a regression degree.

2.4. Paramteric Optimzation: Sea-Horse Optimizer (SHO)

Optimization problems are problems that should identify the best solution to fulfill
the constraints and maximize or minimize the objective function. In general, metaheuris-
tic algorithms, a community of nature-inspired approaches with specialized stochastic
operators, have been developed to address these difficult challenges [43]. The sea-horse
optimizer (SHO) is a revolutionary swarm intelligence-based metaheuristic introduced by
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Zhao et al. [44]. It is influenced by the natural movement, predation, and breeding activities
of sea horses. The proposed SHO algorithm comprises three key components: mobility,
predation, and breeding. In order to balance the exploitation and exploration of SHO, local
and global search algorithms have been developed for the social behaviors of mobility and
predation, respectively. The breeding activity is carried out once the first two activities are
completed, as explained below.

First, in mobility behavior, the tail of the sea horse periodically wraps around an algal
stem (or leaf), which is a feature of its movement patterns. The sea horse is moving in a
spiral because the algae stems are experiencing spiral floating modifications around the
roots owing to the action of marine vortices at this time. Brownian motion is apparent
when the sea horse has suspended upside-down from floating algae or other matter and is
pushed about randomly by the waves.

Second, while engaged in predatory behavior, sea horses employ the unique shape of
their heads to sneak up on their prey and catch it with up to a 90% success rate.

Finally, when it comes to breeding, male and female sea horses marry at random to
form a new generation, which helps the children inherit some beneficial features from
their parents.

Consequently, these three acts enable sea horses to survive and adapt to their sur-
roundings. The three aforementioned characteristics are the primary motivations for the
proposed SHO algorithm.

The SHO is divided into four phases: (A) initialization, (B) mobility behavior, (C) preda-
tion behavior, and (D) breeding behavior of sea horses, as detailed in the subsections below.

2.4.1. Initialization Phase

Similar to other metaheuristics, the SHO algorithm starts with population initialization.
If each sea horse represents a potential solution to a problem in the search space, then the
entire population of sea horses (referred to as seahorses) can be expressed as follows in
Equation (8):

S =

x1
1 · · · xD

1
...

. . .
...

x1
P · · · xD

P

 (8)

where s denotes the seahorses, D indicates the variable’s dimension, while P signifies the
population size.

The lower bound (LB) and upper bound (UB) of a given problem were used as the
starting points for the random generation of each solution. In the search space [LB, UB], the
Equations (9) and (10) for the ith individual Xi are presented as follows:

Xi =
[

x1
i , . . . , xD

i

]
(9)

xj
i = rand ∗

(
UBj − LBj

)
+ LBj (10)

where rand stands for the random number between [0, 1], xj
i stands for the jth dimension in

the ith individual, i is an integer with a positive value between 1 and P, and j is an integer
with a positive value between [1, D]. The optimized lower and upper bounds of the jth
variable of the optimized problem are denoted by LBj and UBj, respectively.

Using the minimum/maximum optimization task, the best individual is designated
by the Xbest and is thought to have the lowest/highest fitness level. Equation (11) can be
used to obtain Xbest.

Xbest = argmin or max( f (Xi)) (11)

where f (Xi) represents the value of the objective function for a specific task.
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2.4.2. Movement Behavior Phase

The diverse movement patterns of sea horses during movement behavior generally
correspond to a normal distributed random distribution (0, 1). To trade off exploration
and exploitation performance, we set r1 = 0 as the cut-off point, with half going to local
mining and the other to global search. As a result, the two phases that follow can be used
to characterize the movement behavior.

Step 1:
The spiral movement of the sea horse is in conjunction with the vortex of the ocean.

When the normal random value r1 is situated on the right side of the cut-off point SHO,
this is primarily exploited locally. Sea horses follow the spiral motion in the direction of
the best solution Xbest. In particular, the Lévy flight [3] is utilized to model the sea horse
movement step size, which is beneficial for the sea horse, with a high probability of crossing
to other spots in early iterations. Furthermore, it prevents the SHO from becoming unduly
localized. The spiral motion of the sea horse continually changes the rotation angle in order
to increase the neighbors of the current local solutions. In this instance, Equation (12) can
be used to generate a new location of a sea horse.

X1
new(t + 1) = Xi(t) + Levy(λ)((Xbest(t)− Xi(t)) ∗ x ∗ y ∗ z + Xbest(t))

s.t


x = p ∗ cos(θ)
y = p ∗ sin(θ)

z = p ∗ θ

p = u ∗ eθv

(12)

where x, y, and z are the three-dimensional coordinates (x, y, and z) under the spiral
movement, respectively. These coordinates are useful for updating the positions of the
search agents. The length of the stems (p) is denoted by the logarithmic spiral constants
u and v, which are set to 0.05 for each u and v, respectively. The value of θ is chosen at
random between [0, 2π]. The Lévy flight distribution function, (Levy(z)), is computed using
Equation (13).

Levy(z) = s ∗ ω ∗ σ

|k|
1
λ

(13)

where ω and k is a random positive number between 0 and 1, s is a constant number of
0.01, and λ is a random value between 0 and 2 (in this work, λ = 1.5), while σ is computed
by applying Equation (14).

σ =

 Γ (1 + λ)∗ sin
(

πλ
2

)
Γ
(

1+λ
2

)
∗ λ ∗ 2(

λ−1
2 )

 (14)

Step 2:
This step illustrates the Brownian motion of the sea horse in reaction to the waves.

When r1 is situated on the left side of the cut-off point, the SHO inquiry is performed while
drifting. In this case, the search operation is critical for avoiding SHO at the local extremum.
Brownian motion is employed to simulate the extended moving length of the sea horse so
that it can explore the search space more efficiently. The mathematical formulation for this
scenario is provided by Equation (15).

X1
new(t + 1) = Xi(t) + rand ∗ l ∗ βt ∗ (Xi(t)− βi ∗ Xbest)

s.t
{

βt =
1√
2π

exp
(
− x2

2

) (15)

where l denotes the constant coefficient of 0.05. The Brownian motion random walk
coefficient is denoted by βt.
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These two circumstances can be combined in Equation (16) to obtain the new location
of the sea horse at iteration t.

X1
new(t + 1) =

{
Xi(t) + Levy(λ)((Xbest(t)− Xi(t)) ∗ x ∗ y ∗ z + Xbest(t)) , r1 > 0

Xi(t) + rand ∗ l ∗ βt ∗ (Xi(t)− βi ∗ Xbest) , r1 ≤ 0
(16)

2.4.3. Predation Behavior Phase

When it comes to feeding on zooplankton and tiny crustaceans, the sea horse can
achieve either success or failure. Given that the sea horse has a higher than 90% probability
of obtaining food, the random number r2 of SHO is generated to differentiate between
these two possibilities and is set to a critical value of 0.1.

The success of the predation highlights SHO’s ability to exploit, since the best, to some
extent, reveals the general location of the victim. If r2 was greater than 0.1, the sea horse’s
predation was successful. It creeps up on the target (the best), outruns the target, and
eventually catches it. If the predation fails, both respond with the reverse response speed as
before, indicating that the sea horse will likely continue scouring the region. This predation
behavior can be mathematically represented by Equation (18):

X2
new(t + 1) =

{
α ∗
(
Xbest − rand ∗ X1

new(t)
)
+ (1− α) ∗ Xbest i f r2 > 0.1

(1− α) ∗
(
X1

new(t)− rand ∗ Xbest
)
+ α ∗ X1

new(t) i f r2 ≤ 0.1
(17)

where r2 is a random integer value between [0, 1], and X1
new(t) is the new position of the

sea horse following movement at iteration t. To change the sea horse’s moving step size for
pursuing prey, it decreases linearly with iterations and is calculated using Equation (18),
where T is the maximum number of iterations.

α =

(
1− t

T

) 2t
T

(18)

2.4.4. Breeding Behavior Phase

The population was divided into male and female groups based on their fitness levels.
Since male sea horses breed, the SHO technique employs half of the population with the
highest fitness ratings as fathers and the other half as mothers. As indicated in Equation (19),
this division prevents the over-localization of new solutions and promotes the inheritance
of beneficial features by fathers and mothers for the next generation.{

f athers = X2
sort(1 : p

2 )
mothers = X2

sort
( p

2 + 1 : p
) (19)

where all of the X2
new are indicated by X2

sort, in ascending order of fitness values. The male
and female populations are represented by the mothers and fathers, respectively.

Random mating between males and females produces new offspring. In order for
the proposed SHO approach to execute swiftly, it is assumed that each pair of sea horses
generates only one child, as illustrated in Equation (20).

Xo f f spring
i = r3X f ather

i + (1− r3)Xmother
i (20)

where r3 is an integer number chosen randomly from [0, 1]. A positive value falls between
[1, p/2] denoted by i. Male and female randomly chosen members are represented by the
X f ather

i and Xmother
i , respectively. The SHO pseudo code is presented in Table 4.
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Table 4. The SHO pseudo code.

SHO pseudo Algorithm

Initialize population Xi
Evaluate the fitness of each search agent
Assign Xbest = the best search agent
While (t < T)

If r1 = randn > 0 Then
Set u = 0.05, v = 0.05

Rotation angle Rand (−2π, 2π)
Generate Levy coefficient by Equation (13)
Update agent position by Equation (12)

Else
Set P = 0.05
Update agent position by Equation (15)

End if
Update agent position by Equation (17)
Evaluate fitness of each search agent
Select fathers and mothers by Equation (19)

Calculate breed offspring by Equation (20)
Evaluate fitness value of each offspring
Select next iteration population from the offspring and parents (top p in fitness value)

Update Xbest
Set t = t + 1

End while
Return Xbest, fbest

A schematic illustration of the experimental strategy combined with the optimization
method is presented in Figure 1.

Atmosphere 2023, 14, x FOR PEER REVIEW 12 of 28 
 

 

 
Figure 1. A conceptualization of the experimental approach coupled with an optimization tech-
nique. 

3. Results and Discussion 
3.1. Experimental Analysis 

Figure 2 displays the effect of the W/D emulsion fuel on the exhaust gas temperature 
of a diesel engine at various engine speeds. As indicated, the exhaust temperature 
dropped as the proportion of water percentage in the W/D emulsion diesel increased. This 
can be attributed to the heat absorbed by the high water content in the emulsion fuel. 
Furthermore, the latent heat of water cooled the engine combustion chamber due to the 
evaporation phenomenon. Therefore, the average temperature of the engine cylinder after 
the fuel injection and before ignition decreases as the water percentage in the W/D emul-
sion fuel increases. Alahmer [12] showed that the reduction in exhaust gas temperature is 
caused by finely distributed water droplets in the W/D emulsion fuel, resulting in a heat 
sink criterion. 

Figure 1. A conceptualization of the experimental approach coupled with an optimization technique.



Atmosphere 2023, 14, 449 12 of 26

3. Results and Discussion
3.1. Experimental Analysis

Figure 2 displays the effect of the W/D emulsion fuel on the exhaust gas temperature
of a diesel engine at various engine speeds. As indicated, the exhaust temperature dropped
as the proportion of water percentage in the W/D emulsion diesel increased. This can be
attributed to the heat absorbed by the high water content in the emulsion fuel. Furthermore,
the latent heat of water cooled the engine combustion chamber due to the evaporation
phenomenon. Therefore, the average temperature of the engine cylinder after the fuel
injection and before ignition decreases as the water percentage in the W/D emulsion
fuel increases. Alahmer [12] showed that the reduction in exhaust gas temperature is
caused by finely distributed water droplets in the W/D emulsion fuel, resulting in a heat
sink criterion.
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Figure 2. Effect of water-in-diesel emulsion fuel on exhaust gas temperature of a diesel engine at
different engine speed.

Figure 3 illustrates the influence of the W/D emulsion fuel on CO2 exhaust emissions
from a diesel engine at different engine speeds. As shown, the amount of CO2 released
increased as engine speed increased. At low water addition amounts of up to 15%, the diesel
engine emitted more CO2 than pure diesel. The excess oxygen atoms in the combustion
mixtures were primarily responsible for the increase in CO2 emissions compared to pure
diesel. Consequently, the mixture became lean as the concentration of oxygen atoms in the
mixture increased. Furthermore, this may be ascribed to the burning of emulsified fuels
causing a significant amount of micro-explosion, resulting in a higher degree of mixing of
the reactant mixture. When more than 15% water is added, the diesel engine emits less CO2
than when a low percentage of water is added. This is because of the high-water content
in the W/D emulsion, which significantly reduced the flame temperature. Therefore, the
temperature is inadequate for converting CO to CO2 [45]. Table 5 shows the average
fluctuation in CO2 for varying water additions of the W/D emulsion fuel compared to pure
diesel fuel.



Atmosphere 2023, 14, 449 13 of 26Atmosphere 2023, 14, x FOR PEER REVIEW 14 of 28 
 

 

 
Figure 3. Effect of water-in-diesel emulsion fuel on carbon dioxide emitted from a diesel engine at 
different engine speed. 

Table 5. The average variation in engine performance and exhaust emission for varying water ad-
ditions of W/D emulsion fuel compared pure diesel fuel. 

Water addition 5% 10% 15% 20% 25% 30% 
BT 3.34% −0.54% −7.61% −17.09% −26.11% −34.27% 

CO2 4.75% 9.98% 4.51% −9.26% −12.11 −22.80% 
CO −4.61% −4.96% −9.57% −4.61% 4.96% 10.99% 

UHC −3.75% −5.63% −15.63% −7.19% 0.63% 16.25% 
O2 11.35% 17.54% 22.36% 38.62% 45.90% 46.93% 

NOx −3.22% −9.60% −20.42% −53.40% −64.38% −67.14% 

Figure 4 depicts the impact of the W/D emulsion fuel on CO exhaust emissions from 
a diesel engine at different engine speeds. According to Figure 4, the percentage of CO 
emitted for all examined emulsion fuels decreased with increasing engine speed until at-
taining a minimum. Subsequently, the emitted CO emissions increased. This can be at-
tributed to incomplete combustion caused by a lean mixture burning at a low speed. The 
additional increase could be spurred by ignition timing retardation, which causes more 
CO to be released at higher engine speeds and the limited time allowed to oxidize all CO 
atoms [46]. The impact of emulsion fuel on the CO released from a diesel engine is divided 
into two scenarios: when the diesel engine was run on W/D emulsion fuel with less than 
15% water content, the CO emitted reduced as the water content increased. This is referred 
to as the effect of a micro-explosion process that may result in complete combustion. When 
using W/D emulsion fuel with more than 15% water content, the CO released increased 
as the water content increased. The highest increment of CO was 10.99% with 30% water 
addition, compared to pure diesel. This was due to a significant decrease in the combus-
tion and flame temperatures, which impacted the oxidation of CO. According to Koc and 
Abdallah [47], the higher CO emissions when water addition increases are due to the large 
quantity of radical OH in water, which is accountable for the high levels boosting carbon 
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different engine speed.

Table 5. The average variation in engine performance and exhaust emission for varying water
additions of W/D emulsion fuel compared pure diesel fuel.

Water Addition 5% 10% 15% 20% 25% 30%

BT 3.34% −0.54% −7.61% −17.09% −26.11% −34.27%

CO2 4.75% 9.98% 4.51% −9.26% −12.11 −22.80%

CO −4.61% −4.96% −9.57% −4.61% 4.96% 10.99%

UHC −3.75% −5.63% −15.63% −7.19% 0.63% 16.25%

O2 11.35% 17.54% 22.36% 38.62% 45.90% 46.93%

NOx −3.22% −9.60% −20.42% −53.40% −64.38% −67.14%

Figure 4 depicts the impact of the W/D emulsion fuel on CO exhaust emissions from
a diesel engine at different engine speeds. According to Figure 4, the percentage of CO
emitted for all examined emulsion fuels decreased with increasing engine speed until
attaining a minimum. Subsequently, the emitted CO emissions increased. This can be
attributed to incomplete combustion caused by a lean mixture burning at a low speed.
The additional increase could be spurred by ignition timing retardation, which causes
more CO to be released at higher engine speeds and the limited time allowed to oxidize
all CO atoms [46]. The impact of emulsion fuel on the CO released from a diesel engine
is divided into two scenarios: when the diesel engine was run on W/D emulsion fuel
with less than 15% water content, the CO emitted reduced as the water content increased.
This is referred to as the effect of a micro-explosion process that may result in complete
combustion. When using W/D emulsion fuel with more than 15% water content, the CO
released increased as the water content increased. The highest increment of CO was 10.99%
with 30% water addition, compared to pure diesel. This was due to a significant decrease in
the combustion and flame temperatures, which impacted the oxidation of CO. According to
Koc and Abdallah [47], the higher CO emissions when water addition increases are due to
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the large quantity of radical OH in water, which is accountable for the high levels boosting
carbon oxidation to CO. Table 5 displays the average variation in the CO for varying water
additions of the W/D emulsion fuel compared pure diesel fuel.
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Figure 5 shows the variation in the UHC emitted from a diesel engine run by different
W/D emulsion fuels at the engine speed. As shown, the amount of UHC emitted from
a diesel engine decreases with increasing engine speed. Consequently, a higher speed
sustains a more efficient mixture of air and fuel, resulting in improved combustion [29,48].
Another observation is that when the diesel engine run by W/D emulsion diesel fuel
contains water less than 15% water addition, the UHC emissions decrease. However, when
the diesel engine run by W/D emulsion diesel fuel has more than 15% water, the UHC
emissions increase. The highest increment of UHC was 16.25%, with 30% water addition
compared to pure diesel. The reduction in UHC emissions is due to the consequence of
a micro-explosion process that might result in total combustion. The increase in UHC
emissions is due to the impact of increasing ignition delay and decreasing combustion and
flame temperature, affecting combustion efficiency [49]. Table 5 demonstrates the average
variation in the UHC for varying water additions of the W/D emulsion fuel compared to
pure diesel fuel.
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different engine speed.

Figure 6 depicts the fluctuation in O2 emissions with engine speed for several W/D
emulsions. As the proportion of water in the W/D emulsion increased, the quantity of
oxygen released increased. This is owing to the higher amount of oxygen atoms in the
W/D emulsion fuel [50]. On average, the highest O2 released was 46.93% at 30% water
addition, compared to pure diesel. Table 5 displays the average variation in O2 for varying
water additions of the W/D emulsion fuel compared to pure diesel fuel.
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Figure 7 depicts the fluctuation of NOx with engine speed for various emulsions. The
engine speed has little influence on NOx generation compared to the amount of water in
the W/D emulsion fuel. Compared to pure diesel, the combustion of W/D emulsion fuels
generated significantly less NOx. This was attributed to the heat sink phenomenon, which
lowed the adiabatic flame temperature. It is well known that NO formation is directly
related to high combustion temperature. The temperature was reduced owing to the high
latent heat from water evaporation in the W/D emulsion, which absorbed heat during
combustion. Jazair et al. [51] stated that the phase change causes a decrease in NOx from
water to steam; the endothermic process occurs in the combustion chamber, resulting
in a decrease in the in-cylinder temperature. According to Farfaletti et al. [52], the heat
sink effect lowers the combustion temperature. The inner water phase of an emulsion
fuel partially absorbs the heat generated when the fuel is burned. This can result in a
cooler flame and a reduction in the overall heat output of the fuel. Additionally, the water
droplets can act as a heat sink, helping to stabilize the combustion process and reduce
emissions [53,54]. Consequently, this lowers the temperature of the burning gases during
combustion, which limits the production of NOx. According to Dryer [55], the presence of
water in the emulsion increases the concentration of hydroxyl (OH) radicals, which in turn
leads to a decrease in NOx. However, this explanation contradicts the results reported by
Ballester et al. [56]. They investigated the flames of the W/D emulsion blends and pure
diesel. The authors assessed the regional distribution of the flame temperature as well as
species concentrations of O2, UHC, CO, and NOx. They observed that the concentration
of gases in the inner core of flames during combustion was almost the same for the W/D
emulsion fuel and diesel fuel. According to the authors, the decrease in NOx cannot be
attributed to changes in gas composition. Moreover, they identified that a decrease in
NOx generation occurred as the combustion process was near completion. The peak flame
temperature was found in this region, and it was estimated to be reduced by 65 K compared
to pure diesel fuel. This study demonstrated that thermal-NO production strongly depends
on the peak flame temperature. Table 5 presents the average fluctuation in NOx for varying
water additions of the W/D emulsion fuel compared to pure diesel fuel.
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It is worth noting that the reduction in combustion temperature as a result of increased
water content in emulsion has a direct impact on NO formation. This is because the slower
chemical reaction rates lead to a decrease in NO production. This relationship can be seen
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through the Zeldovich mechanism reactions, where the rate of NO formation is influenced
by combustion temperature [57,58].

O + N2
K1 f , K1r↔ NO + N

K1 f = 1.8× 1011exp(−38,370
T ) m3

Kmol.s
K1r = 3.8× 1010exp(−425

T ) m3

Kmol.s

(21a)

N + O2
K2 f , K2r↔ NO + O

K2 f = 1.8× 107exp(−4680
T ) m3

Kmol.s
K2r = 3.81× 106exp(−20,820

T ) m3

Kmol.s

(21b)

N + OH
K2 f , K2r↔ NO + H

K3 f = 7.1× 1010exp(−450
T ) m3

Kmol.s
K3r = 1.7× 1011exp(−24,560

T ) m3

Kmol.s

(21c)

where K1, K2, and K3 are the reaction rate constants in the Arrhenius law. The letters f and
r, used as subscripts in the reaction constant k, indicate the forward and reverse directions
of the reaction, respectively.

Figure 8 illustrates the impact of the percentage of water addition in W/D emulsions
on the engine bake torque at different speeds. The BT increases with engine speed to an
optimum amount, beyond which it begins to drop owing to friction losses and the inability
of the engine to consume a complete charge of air at high speeds. When the engine runs
on 5% water added to the W/D emulsion fuel at 2000 rpm, the BT generated is at its
optimum. This is consistent with Dryer’s [21] finding that water in W/D emulsion diesel
fuel enhances the combustion mechanism due to simultaneous additional braking of the
droplets, which boosts the evaporation surface of droplets and enhances the mixing of the
burning fuel in air. The BT decreased as the proportion of water in the W/D emulsion
increased. This is due to the increased push on the top of the piston generated by the steam
pressure. This process generates tremendous pressure when the charge is ignited in the
cylinder. Furthermore, the addition of more than 5% water reduced the heating value of
the fuel. Table 5 exhibits the average variation in BT for varying water additions of the
W/D emulsion fuel compared to pure diesel fuel.
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It is important to note that previous research has thoroughly examined the effects of
various emulsion diesel blends on CI engine performance in terms of brake power (BP),
brake thermal efficiency (BTE), and brake specific fuel consumption (BSFC). This study,
however, focuses on optimizing the water content while considering the overall behavior
of the CI engine, including BP, BTE, and BSFC [59].

3.2. Support Vector Regression Modeling

The experiments were performed using MATLAB R2018a on a Windows 10 64-bit com-
puter with an Intel Core I5-11th generation processor and 8 GB of RAM. The experiment
was conducted in two stages. First, regression modeling is based on support vector regres-
sion to predict the relationship between variables (engine speed and water addition in the
W/D emulsion fuel) and response (BT as an indicator of engine performance and exhaust
emissions). Second, SHO optimization was applied to maximize BT and minimize NOx,
UHC, and CO emissions. The SVR and ANN parameters for the modeling are presented in
Table 6.

Table 6. Parameters of SVR and ANN models.

Experiment
SVR Parameter ANN Parameter

σ C d Hidden Layers Learning Rate Epoch Momentum

BT 1 20.175 3 4 0.1 10 0.05
CO 0.3 0.472 3 4 0.01 10 0.05

UHC 0.5 52.371 2 3 0.1 10 0.05
NOx 1.5 209.802 4 3 0.1 10 0.05

The precision prediction model for engine performance in terms of BT and different
exhaust emissions, including CO, UHC, and NOx, was constructed using the SVR technique.
The sample data were divided into two parts: N-m data were used to predict the test, and
m data were used as training samples to build the predictive model.

The mean square error (MSE) and determination of coefficient (R2) can serve as indicators
of a model’s efficacy in regression prediction tasks, as presented in Equations (22) and (23),
respectively.

MSE =
1
n ∑n

i=1(Oi − Ti)
2 (22)

R2 =
(n ∑n

i=1 Oi.Ti −∑n
i=1 Oi. ∑n

i=1 Ti)
2(

n ∑n
i=1 O2

i − (∑n
i=1 Oi)

2
)(

n ∑n
i=1 T2

i − (∑n
i=1 Ti)

2
) (23)

where n stands for the test set, T stands for the target value, and O stands for the anticipated
result of the ith set of data. It is worth noting that the prediction accuracy improved as
the MSE decreased. The R2 value determines the degree of the correlation. The fitting
percentage improves as R2 approaches 1. Table 7 compares the SVR model assessment to
the ANN model utilizing the rectified linear unit (ReLU) for the hidden layers to analyze
the effectiveness of the proposed model. Table 7 compares the performance of the two
models based on MSE and R2 scores and indicates that the SVR outperforms the ANN,
particularly for small datasets, because it is more robust to noisy data. Furthermore, local
minima constitute a barrier for ANNs, implying that loss function minimization may fail.

A graphical representation was developed to assess the SVR model. To demonstrate
the prediction accuracy of the models, their forecasts were plotted against the respective
targets for each experiment (BT, CO, UHC, and NOx), as shown in Figure 9. This shows
how well the SVR models mimic the provided observations.
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Table 7. Statistical comparison of the SVR prediction model to the ANN model.

Experiment
SVR Model ANN Model

MSE R2 MSE R2

BT 0.00309 0.9883 0.0413 0.9272
CO 0.00312 0.9834 0.0546 0.9185

UHC 0.00205 0.9915 0.00423 0.9808
NOx 0.00193 0.9934 0.00375 0.9816
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3.3. Engine Performance and Emission Optimization

The optimization process is the next stage of our framework. The SHO method
was used to optimize the output of the SVR model. The main target of the optimization
process is to determine the optimal water addition and engine speed for different water
percentages in the fuel mixture in order to decrease engine emissions (CO, UHC, and
NOx) while optimizing engine performance (BT). Table 8 highlights the best outcomes
for each response. According to the results, adding 5% water to the fuel mixture resulted
in the highest BT (55.348 N.m) and lowest CO (0.479%) at engine speeds of 1877 and
1912 rpm, respectively. Regarding UHC and NOx, the lowest values were 35 and 112 ppm
at engine speeds of 3000 and 1476 rpm, respectively, when 15% and 30% water were added
to the fuel.

Table 8. Outcomes of the optimization process for each response in relation to the volume of water in
the fuel mixture.

Experiment Engine Speed (rpm) Water% Optimum Value

BT 1877 5% 55.348 N.m
CO 1912 5% 0.479%

UHC 3000 15% 35 ppm
NOx 1476 30% 112 ppm
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Single-objective optimization is an efficient method for determining the best solution
by maximizing or minimizing a single objective. Compared to single objective optimization,
multiple objective optimizations can produce a set of non-dominated optimal solutions that
help us understand the trade-offs between different goals [60]. In our framework, multi-
objective optimization problems can be developed using weighting factors that combine
different objectives into a single weighted objective. Table 9 lists the weights for each
response that are used in the optimization process to determine the optimal value.

Table 9. The response weights that were employed in multi-objective optimization.

Response Weight Target

BT 0.3 Maximize
CO 0.2 Minimize

UHC 0.2 Minimize
NOx 0.3 Minimize

Table 10 shows the optimum engine speed and percentage of water added to reduce
exhaust engine emissions while maximizing the engine performance. The added 15% water
had better results in terms of engine emissions compared to pure diesel, which decreased
by 5.2%, 22.938%, and 36.635% for CO, UHC, and NOx, respectively, at an engine speed
of 1848 rpm. However, the engine performance in terms of BT was observed to decrease
slightly by 5.973% when 15% water was added.

Table 10. Summary of multi-objective optimization results for all BT, CO, UHC, and NOx for various
engine speeds and percentages of adding water to the fuel mixture.

Experiment Engine Speed Water% BT CO UHC NOx

Optimum values using SHO 1848 15% 49.503 0.5 57 369
Optimum values using WOA 1912 10% 52.252 0.48 62.3 404

The optimization of engine exhaust emissions and performance was achieved by
comparing the performance of SHO with other meta-heuristic optimization techniques
using the Whale Optimization Algorithm (WOA) as a reference. According to the findings
in Table 10, SHO demonstrates a more robust potential for parallel optimization compared
to WOA. This is attributed to SHO’s advantages in terms of its ability to perform local
exploitation effectively, achieve high precision in convergence, and its resilient design.
The results highlight the investigation of Brownian motion throughout the world and the
diverse offspring it produced. Furthermore, the adaptive parameter α and spiral motion in
SHO play a role in guiding the optimization towards the ideal outcome, thus enhancing its
accuracy in re-exploitation.

In conclusion, the results of this study were compared with previous research that
utilized W/D emulsion fuels in CI engines, as shown in Table 11. The findings indicate that
using W/D emulsion fuel has the potential to improve engine performance and decrease
exhaust emissions from CI engines. However, prior studies did not always strike a balance
between engine performance and emissions in determining the optimal water addition,
which remains a major challenge in the automotive industry. It is acceptable to tolerate a
small reduction in BT order to mitigate the environmental impact of diesel fuel.
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Table 11. Compare the present study with other studies that utilized W/D emulsions in
diesel engines.

Ref. Diesel Engine
Specification

Test
Conditions Water Content

Effect of the
Engine

Performance

Effect on the
Exhaust

Emission
Optimal Blend

Current Study 4 S, 4 C, DI, W–C FL, VS
(1000–3000) rpm

0–30% Vol., 5%
increment Step

BT↑ until 5%
water addition

EGT↓, CO2↑ until
15%, CO↓ until

15%, UHC↑ until
15%, O2↑, and

NOx↓

15% (according
SVR-SHO)

Ithnin et al., 2015
[20]

4 S, 1 C, A–C,
0.406 L VL 0–20% Vol., 5%

increment Step BSFC↓
NOx↓, CO↑, PM↓,

CO2↓ @higher
loads

20%

Hasannuddin et al.,
2016 [61] 1 C, A–C, 400 CC VL 0, 10, and

20% Vol. FC↑
EGT↓, NOx↓,

CO↑, PM↓, CO2↓
and soot ↓

20%

El Shenawy et al.,
2019 [62] 1 C, 825 CC VL

0–9% Vol.,
3% increment

Step
BTE↑ and BSFC↓

NOx↓, CO↓,
UHC↓, and

smoke opacity ↓
9%

El-Din et al., 2019
[63] 1 C, A–C VL 0, 5, 6, and

7% Vol. BTE↑ and BSFC↓
NOx↓, CO↓,
UHC↓, and

smoke opacity ↓
7%

Jhalani et al., 2019
[64]

4 S, 1 C, DI, 661
CC, W–C

CS (1500 rpm),
and VL

0–20% Vol., 5%
increment Step BTE↑ NOx↓, and smoke

opacity ↓ 15%

Hoseini and Sobati,
2019 [32]

4 stroke, Single
cylinder, 510 CC CS (1800 rpm), FL 0–20% Vol., 5%

increment
PB↓, BT↓, BTE↑,

and BSFC↑
CO↑, UHC↑,

CO2↑, and NOx↓ 5%

Hassan et al., 2021
[65] 4 S, 1 C VL 0–10% Vol., 2%

increment step BSFC↑ and BTE↓
CO↑, UHC↑,
smoke↓, and

NOx↓
10%

Alahmer et al., 2023
[59] 4 S, 4 C, DI, W–C FL, VS

(1000–3000) rpm
0–30% Vol., 5%
increment Step

BP↑ until 5%,
BSFC↓ until 10%,

and
BTE until 15%

NOx↓

9% (Applied of
IGWO)

12% (Applied of
GWO

S: Stroke, C: Cylinder, W–C: Water cooled; A–C: Air cooled VS: Variable engine speed, CS: Constant engine speed,
FL: Full load, VL: Variable load, FC: Fuel consumption, EGT: Exhaust gas temperature; ↑: Increase; ↓: Decrease,
GWO: grey wolf optimizer; and IGWO: intelligent grey wolf optimizer.

4. Conclusions

The SVR-SHO is proposed as a robust and innovative strategy for determining the
optimal engine speed and water addition to W/D emulsion fuel for the operation of a
four-cylinder diesel engine in this study. The CO, NOx, and UHC exhaust emissions were
minimized, while the BT was maximized. The following are the most relevant findings
from the experimental and optimization analyses:

• The W/D emulsion fuel combustion produced much less NOx than pure diesel.
The decrease ranged from 3.22% to 67.14%, depending on the proportion of water
added. This is due to the heat sink phenomenon, which lowers the adiabatic flame
temperature.

• According to the experimental analysis, the highest reductions in UHC and CO were
15.63% and 9.57%, respectively, at 15% water addition compared to pure diesel. The
reduction in UHC and CO emissions was due to the consequence of a micro-explosion
process that might result in total combustion.

• The use of a nonlinear kernel (ANOVA radial basis) allows the SVR to model engine
performance and emissions. The model performance was proven with an MSE of less
than 0.0032 and an R2 of more than 0.98.

• The SHO approach provides the optimum value with better exploration capability.
The addition of 15% water to the W/D emulsion fuel reduced the engine emission
levels as compared to pure diesel. It observed a decrease in CO, UHC, and NOx of
5.2%, 22.938%, and 36.635%, respectively, at an engine speed of 1848 rpm. However,
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when 15% water was added, engine performance in terms of the BT was slightly
reduced by 5.973%.

• The SVR model outperformed the ANN model, particularly for small datasets, because
it was more robust to noisy data. Furthermore, local minima constitute a barrier for
ANNs, implying that loss function minimization may fail.

• The SHO demonstrates a more robust potential for parallel optimization compared to
WOA. This is attributed to SHO’s advantages in terms of its ability to perform local
exploitation effectively, achieve high precision in convergence, and its resilient design.

5. Future Works

The following areas will be thoroughly examined in future studies:

• The influence of the W/D emulsion fuel on fuel characteristics, such as a cetane
number (CN), flash point (FP), and Fourier-transform infrared spectroscopy (FTIR).

• Examining the combustion characteristics of the fuel in a CI engine, including the
combustion pressure profile, peak pressure rise rate, total heat release rate, ignition
delay, combustion duration, and overall engine performance through energy and
exergy assessments.

• Examining the impact of varying water droplet sizes on exhaust emissions, to deter-
mine the optimal droplet size for reducing pollutants.

• Analyzing the effect of different injection strategies, such as injection timing and
pressure, on exhaust emissions.

• Investigating the long-term durability of the emulsion fuel and its impact on engine
components such as injectors and fuel pumps.
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Nomenclature

List of Abbreviations
A–C air cooled
ANN artificial neural network
AI artificial intelligent
BP brake power
BSFC brake-specific fuel consumption
BT brake torque
BTE brake thermal efficiency
C cylinder
CI compression ignition
CN cetane number
CO carbon monoxide
CO2 carbon dioxide
CS constant engine speed
DC direct current
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EGT exhaust gas temperature
FC fuel cell, fuel consumption
FL full load
FP flash point
FTIR Fourier-transform infrared spectroscopy
GWO grey wolf optimizer
IGWO intelligent grey wolf optimizer
LB lower bound
MSE mean square error
ND-IR nondispersive infrared
NOx nitrogen oxides
PSO particle swarm optimization
ReLU rectified linear unit
RSM response surface methodology
S stroke
SHO sea-horse optimizer
SVM support vector machine
SO2 sulfur dioxide
SVR support vector regression
UHC unburn hydrocarbon
UB upper bound
VL variable load
VS variable engine speed
W–C water cooled
W/D water-in-diesel
WOA whale optimization algorithm
WOT wide-open throttle
List of symbols
f(x) function
f (Xi ) objective function
b constant coefficient
C penalty factor
s seahorses
D variable’s dimension
R2 coefficient of determination
P population size
x, y, z three-dimensional coordinates
x n-dimensional input
rand random number
i, j integer
Xbest best individual
p length of the stems
u,v logarithmic spiral constants
Levy(z) Lévy flight distribution function
l constant coefficient
t iteration
r2, r3 integer number
T maximum number of iterations
X f ather

i male random
Xmother

i female random
Greek symbols
ϕ(x) kernel function
ε intense loss parameter
ξi, ξ∗i non-negative slack variables
ω weight coefficient
α∗i , αi Lagrangian multipliers
ω, k, λ random positive number
βt Brownian motion random walk coefficient
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