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Abstract  

In this paper, a method is developed to control the induction motor IM using direct torque control (DTC), by means of 
artificial neural networks (ANN), in order to reach the optimum performance .And then using the MRAS technique, the 
desired and efficient control of the rotor speed could be estimated and achieved. The design uses the individual training 
technique with the fixed weight and the controlled models to avoid the difficult DTC calculation. A specific comparison 
analysis was conducted between both the control for direct torque neural networks (DTNNC) and conventional direct 
torque control (CDTC) applied to select voltage vector switching. The chassis was designed by Matlab / Simul for DTC. 
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Introduction

Due to their low cost, ease of maintenance, high 
reliability and ease of provision of their 
maintenance equipment, the most common engines 
in industrial applications are induction engines [1]. 

Electric motors for high performance need 
decoupled torque and control of flow. By using 
power by direct torque control in a dynamic way, 
this happens. Direct torque control (DTC) of an 
inverter pulse rate motor has gained a lot of 
attention in recent years. The basic configuration of 
the induction motor which controls direct torque. 
Through the diagram shown in Fig.1 as a 
conventional scheme, the difference between the 
reference torque Tref and the measured torque 
rating telm and there is a line between the two as 
input for a three-level hindrance comparison, the 
error between the size of the stator reference flux 
vector ψSref and the size of the stator reference flux 

vector ψS are the vectors Two-level hindrance 
comparison Figure 1, ST indicates the switching 
table and MM is the model of inductance. [2-3]. Often 
this traditional method has several disadvantages 

• Variable transfer frequency; 

• Present and torque distortions caused by 
sectorial shifts; 

• Starting and low-issues with speed operation; 

• High sampling frequency specifications for 
hysteresis comparators for digital 
implementation. 

In view of the problems listed above and with the 
purpose of avoiding torque waving and improving 
the performance of the conventional DTC system, 
the new method is proposed. 
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Fig. 1. The conventional scheme for DTC  

 
Table 1 shows the proposed method instead of the 
traditional method, as the new method includes 
replacing the Look-up table of switching state 
selector with a method in which the Auxiliary 
Artificial Neural Networks controller uses ANN and 
the use of neural PID instead of the traditional 
method. In addition, the rotational speed was 
evaluated by (MRAS) technology. 
 
Table I. Table in the Traditional Method for DTC Switching Table 

Section 1 2 3 4 5 6 

Φ= 1 
Ʈ=1 𝒖⃗⃗ 𝟐 𝒖⃗⃗ 𝟑 𝒖⃗⃗ 𝟒 𝒖⃗⃗ 𝟓 𝒖⃗⃗ 𝟔 𝒖⃗⃗ 𝟏 
Ʈ=0 𝒖⃗⃗ 𝟕 𝒖⃗⃗ 𝟎 𝒖⃗⃗ 𝟕 𝒖⃗⃗ 𝟎 𝒖⃗⃗ 𝟕 𝒖⃗⃗ 𝟎 
Ʈ= -1 𝒖⃗⃗ 𝟔 𝒖⃗⃗ 𝟏 𝒖⃗⃗ 𝟐 𝒖⃗⃗ 𝟑 𝒖⃗⃗ 𝟒 𝒖⃗⃗ 𝟓 

Φ= 0 
Ʈ=1 𝒖⃗⃗ 𝟑 𝒖⃗⃗ 𝟒 𝒖⃗⃗ 𝟓 𝒖⃗⃗ 𝟔 𝒖⃗⃗ 𝟏 𝒖⃗⃗ 𝟐 
Ʈ=0 𝒖⃗⃗ 𝟎 𝒖⃗⃗ 𝟕 𝒖⃗⃗ 𝟎 𝒖⃗⃗ 𝟕 𝒖⃗⃗ 𝟎 𝒖⃗⃗ 𝟕 
Ʈ= -1 𝒖⃗⃗ 𝟓 𝒖⃗⃗ 𝟔 𝒖⃗⃗ 𝟏 𝒖⃗⃗ 𝟐 𝒖⃗⃗ 𝟑 𝒖⃗⃗ 𝟒 

 

Induction Motor Mathematical Model 

There is a complex model for the induction motor 
that can be derived using the method of 
transforming three-phase quantities into two direct 
phases and quadratic quantities. In a static frame of 
reference such as this, the mathematical model can 
be given in compressed form. [4-5]: 

 
𝛹𝑑𝑠 = 𝐿𝑠𝑖𝑑𝑠 + 𝐿𝑟𝑖𝑑𝑟 , 𝛹𝑞𝑠 = 𝐿𝑠𝑖𝑞𝑠 + 𝐿𝑟𝑖𝑞𝑟  (2) 

𝛹𝑑𝑟 = 𝐿𝑟𝑖𝑑𝑟 + 𝐿𝑠𝑖𝑑𝑠 , 𝛹𝑞𝑟 = 𝐿𝑟𝑖𝑞𝑟 + 𝐿𝑠𝑖𝑞𝑠  (3) 

Where Vds ,Vqs,ids,iqs,Rs,Ls ,Rr,Lr ,Lm,Ψds, Ψqs , Ψdr, Ψqr and 
θr, the d-q axes are voltages and currents, stator 

resistance, stator inductance, rotor resistance, rotor 
inductance, stator and rotor winding mutual 
inductance, stator flux connections, rotor flux 
connections, and rotor position, respectively.. 
The electromagnetic torque obtained from contacts 
and currents of machine flux is as: 

𝑇𝑒 =
3

2

𝑃

2
𝐿𝑚(𝑖𝑞𝑠𝛹𝑑𝑟 − 𝑖𝑑𝑠𝛹𝑞𝑟)  (4) 

Where Te, P, Ψdr, Ψqr is the electromagnetic torque, 
number of poles, rotor d-q axes fluxes respectively. 
In a stationary reference frame, the electromagnetic 
torque equation can also be obtained as a 

𝑇𝑒 =
3

2

𝑃

2

𝐿𝑚

𝜎𝐿𝑟𝐿𝑠
|𝛹𝑟||𝛹𝑠| sin 𝜃𝑒  (5) 

Where θe the angle between the space vectors of the 
stator and rotor flux relation is e, as shown in Fig.1. 
 

 

Fig. 2. Space vectors for stator and rotor flux-linkage 

 
Where  

𝜎 = 𝐿𝑒𝑎𝑘𝑎𝑔𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 1 − (
𝐿𝑚
2

𝐿𝑠𝐿𝑟
)  

The stator flux relation, voltage and torque 
equations can be obtained as fallows in the d-q axis 
stationary reference frame. 
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𝑣𝑑𝑠 = 𝑅𝑠𝑖𝑑𝑠 + 𝑝𝛹𝑑𝑠   (6) 
𝑣𝑞𝑠 = 𝑅𝑠𝑖𝑞𝑠 + 𝑝𝛹𝑞𝑠   (7) 

𝛹𝑑𝑠 = ∫(𝑣𝑑𝑠 − 𝑅𝑠𝑖𝑑𝑠) 𝑑𝑡  (8) 

𝛹𝑞𝑠 = ∫(𝑣𝑞𝑠 − 𝑅𝑠𝑖𝑞𝑠) 𝑑𝑡  (9) 

𝛹𝑠 = √𝛹𝑑𝑠 
2 + 𝛹𝑞𝑠 

2    (10) 

𝜃𝑒 = tan−1 (
𝛹𝑞𝑠

𝛹𝑑𝑠
)   (11) 

Equation 5 shows that the torque of a motor can be 
modified by changing the rotor flow vectors or the 
stator. The squirrel cage rotor induction machine 
has a very high time constant through comparison 
with the connected stator flux. The rotor flux 
correlation changes slowly. This flow did not change 
over a short transient period. Thus, by turning the 
stator flux in the desired direction, which is 
determined by the torque order, rapid changes in 
electromagnetic torque can be induced. On the other 
hand, by applying suitable stator voltage phases, the 
stator flux can be accelerated or slowed instantly. 
Reasonable voltage vectors may be controlled, 
depending on the stator flux location, to control both 
flux and torque [13]. 

 

The Artificial Neural Networks Concept 

A dense interconnection of computing nodes is used 
by artificial neural networks to approximate 
nonlinear functions. Each node constitutes a neuron 
and multiplies its input signals by constant weights, 
sums up the results and maps the total to a                      
g-function of nonlinear activation; the result is then 
translated to its output. An ANN forward feed is 
organized into layers: an input layer, one or more 
hidden layers, and a layer of output. A MLP is 
comprised of an input Layers, some secret layers, a 
few hidden layers [6], [11]. 

The neuron structure is shown in Figure 2 and the 
neuron's mathematical model is given by 

𝑦 = 𝜑(∑𝜔𝑖𝑥𝑖 − 𝑏

𝑁

𝑖=1

) 

Where, xi=(x1, x2, x3... xn) are inputs from the neurons 
of the previous layer ωi=(ω1,ω2,…….,ωn) are the 
corresponding weights, and 'b' is the neuron bias. 
The output is given via a logarithmic sigmoidal 
activation function. 

𝑦 =
1

1 + 𝑒[∑ 𝜔𝑖𝑥𝑖
𝑁
𝑖=1 −𝑏]

 

 

 

Fig. 3. Neuron Structure 

 
A feed forward neural network has layers: an input 
layer, one or more hidden layers, and a layer of 
output. No calculation is carried out in the input 
layer and the signals are directly supplied from the 
input layer to the first hidden layer. For hidden and 

output neurons, there is usually a sigmoidal 
activation mechanism 
 

DTC Dependent on Neural Network 

A neural network is a device like human brain with 
properties of learning capacity and generalization. It 
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takes a lot of preparation to grasp the model of the 
farm. This network’s basic property is that it can 
approximate complex nonlinear functions [6]. The 
neural network is used as a sector selector in the 
direct torque control scheme, as shown in Figure 3. 
Torque and flux errors are given to the neural 
network controller as inputs along with the flux 
location information in this control strategy [7], [8]. 

The Artificial Neural Network (ANN) offers the 
following advantages over other conventional DTC 
schemes for induction engines. 

i. Reduction of Controller Complexity; 

ii. Reduction of the effects of changes in motor 
parameters, in particular in the calculation of 
stator-flux; 

iii. Improving the time response of the controller, 
i.e., the ANN controller uses only parallel sum 
processing, constant gain products, and a 
collection of well-known non-linear functions 
to minimize computation time. 

iv. ANN's are fault tolerant and can derive valuable 
knowledge from noisy signals to improve drive 
robustness. 

 

 

Fig. 4. DTC Schematic with Neural-Network Controller 

 
Algorithms of learning in Neural Networks 

Back-propagation [16] is the most popular 
supervised learning algorithm, which consists of a 
forward and a backward action. The free parameters 
of the network are set in the forward phase and the 
input signals are propagated from the first layer to 
the last layer all over the network. We calculate a 
mean square error in the forward step. 

𝐸(𝑘) =
1

𝑁
∑ (𝑑𝑖(𝑘)𝑁

𝑖=1 − 𝑦𝑖(𝑘))2 (12) 

Where di is the desired response, yi is the actual 
output produced by the network in response to the 
xi input, k is the number of iterations, and N is the 
number of training data for input-output. The 
second step in the backward process, the error 
signal E(k) is propagated in the backward direction 

across the network of Figure 11 in order to make 
changes to the free Network parameters to decrease 
error E(k) in a statistical sense [9]. Therefore, the 
weights associated with the network output layer 
are modified using the following formula. [10]: 

𝑤𝑗𝑖(𝑘 + 1) = 𝑤𝑗𝑖(𝑘) − Ƞ
𝜕𝐸(𝑘)

𝜕𝑤𝑗𝑖(𝑘)
  (13) 

Where wji is the weight connecting the output layer's 
Ƞ neuron to the previous layer's Ƞ neuron, the 
constant learning rate is wji. Large values can speed 
up ANN learning and therefore faster convergence, 
but may cause network output oscillations, while 
low values will cause slow convergence. Therefore, 
in order to prevent uncertainty, the value of Ƞ must 
be carefully selected. 
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Fig. 5. Flowchart for training back propagation networks 

 
As shown in equation (14), we change the equation 
formula (13) to ensure rapid convergence, where a 
positive constant is called the momentum constant. 

𝑤𝑗𝑖(𝑘 + 1) = 𝑤𝑗𝑖(𝑘) − 𝜂
𝜕𝐸(𝑘)

𝜕𝑤𝑗𝑖(𝑘)
+ 𝛼∆𝑤𝑗𝑖(𝑘)  (14) 

The concrete back propagation training method is 
illustrated in the flowchart in Figure 5. Once the ANN 
is properly trained, the validity of the model using 
data that is different from the training set should be 
appropriately tested to determine it. 
 

Speed Estimation with MRAS 

The fundamental principle of MRAS is the existence 
of a reference model that specifies the desired states 
and an adaptive (adjustable) model that produces 
the states' approximate values. An adaptation 
mechanism is fed to the error between these states 
to produce an approximate rotor speed value that is 
used to change the adaptive model. This process 
continues until there is a tendency of error between 
two outputs to zero [2], [14],[15]. It is possible to 
write simple equations of rotor flux based-MRAS as: 

𝛹𝑟
∗ =

𝐿𝑟

𝐿𝑚
{𝑉𝑠 − 𝑅𝑠𝑖𝑠 − 𝜎𝐿𝑠𝑖𝑠}   (15) 

𝜎 = 1 −
𝐿𝑚
2

𝐿𝑠𝐿𝑟
     (16) 

𝛹𝑟 = (−
1

𝑇𝑟
+ 𝑗𝜔𝑟)𝛹𝑟 +

𝐿𝑚

𝐿𝑚
𝑖𝑠   (17) 

𝑇𝑟 =
𝐿𝑟

𝑅𝑟
     (18) 

The reference model (4) is based on stator equations 
and is thus independent of engine speed, while the 
adaptive model (6) is velocity-dependent since it is 
derived from the stationary reference frame rotor 
equation. The adaptation mechanism compares the 
two models and an integrated proportional 
regulator estimates the speed of rotation. By using 
the principle of Lyapounov stability, we can create a 
method to adapt the mechanical velocity from the 
condition of the asymptotic convergence of the 
asymptotic convergence. 
It is possible to write the speed-tuning signal and the 
estimated speed expressions as [2]: 

𝜀𝜔 = 𝐼𝑚(𝛹𝑟𝛹𝑟
∗) = 𝛹𝑟𝑞𝛹𝑟𝑑 − 𝛹𝑟𝑑𝛹𝑟𝑞  (19) 

𝜔𝑟 = {𝑘𝑝 +
𝑘𝑖

𝑠
} 𝜀𝜔    (20) 
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The conventional MRAS speed observator is shown 
in Figure 6. [16]. 
 

 

Figure 6. Conventional observer of MRAS speed 

 
Figure 7 displays the proposed system. With an 
MRAS speed observer, an artificial neural network 
aided controller is used, so the speed sensor has 
been omitted and the value of velocity is derived 
from measurements of electrical signals. 
 

 

Figure 7. Scheme of proposed neural DTC with estimator of MRAS 

 

Results of Simulation 

A number of simulations were performed using 
Matlab / Simulink to analyze the device and 
compare the performance of the proposed PID 
controller. Classic DTC and neural DTC were 
compared using neural PID with MRAS estimation. 
The PWM inverter for the stator side is operated. 
Both controllers are checked and compared in the 
running mod comparison tracking. The references 
to torque, flux and rotor velocity used in this 
simulation are 2 N. M (applied at T1= 0.5S, 1Wb and 
148 rad/S. IM parameters are listed in Table 2. 
 
Table 2. Induction Motor Parameters 

Parameters Values  
Number of pairs of poles P 2 
Rated power Pn 1.5KW 
Rated frequency fn 50HZ 
Rated speed Wn 142rpm 
Rated current In 6,4/ 3,7A 
Rated voltage Vn 220\380 
Stator resistance Rs 1.95 Ω 
Rotor resistance Rr 1.66 Ω 
Stator inductance Ls 244mH 
Rotor inductance Lr 243mH 
Mutual inductance Lm 369mH 
Moment of inertia J 0.025 Kg/m 
Viscous friction coefficient f 0,0114. Kg/m2\S 

 
Figures 8 and 9 present the simulation results of the 
electromagnetic torque and the evolution of the end 
of the stator vector flux using the conventional DTC 
(a) and neural network DTC (b). 
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Figure 8. Electromagnetic torques for conventional DTC classic (a) and neural network DTC (b) 

 

 

Figure 9. Comparison of the evolution of the end of the stator vector flux for the DTC Classic (a) and the neural DTC (b) 

 
Figures 10 and 11 present the simulation results of 
the module of stator flux and the rotor speed using 

the conventional DTC (a) and neural network DTC 
(b). 
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Figure 10. Module of stator flux for conventional DTC (a) and neural network DTC (b) 

 

 

 

Figure 11. Rotor speed for conventional DTC PID regulator (a) and neural network DTC PID with MRAS estimation (b). 
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Fig. 10 is a comparison of the torque response with 
artificial neural networks for the standard DTC 
approach and the DTC approach. From the answer, 
we can note that the torque at traditional DTC is 
significantly more oscillated than with artificial 
neural networks in the case of the DTC system. The 
stator flux vector trajectory, which is almost 
circular, is defined in Fig 11. It can be seen in this 
figure that the better response is provided by the 
neural network controller. The response of the 
stator flux module is exactly followed by its relation 
in Fig 12 and there is almost no ripple for DTC based 
on the neural network. The angular velocities are 
expressed by Fig 13. We can see that the two 
approaches (conventional DTC and DTC with ANN) 
do not have a major difference. 
 

Conclusion 

In this paper, direct induction motor torque control 
based on artificial neural networks has been 
introduced, with speed estimation and regulation 
using MRAS and PID neural network regulator. The 
proposed control strategy provides the following 
advantages: reduction of flux and torque ripples; 
and operation of the system without a speed sensor. 
The results show that the settling time is 
substantially reduced with neural network DTC, 
peak overshoot values are limited and oscillations 
are damped. 
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