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Abstract—A new prediction modelling approach for hydropower generation in the presence of input random 
variables is investigated in this paper. Firstly, they decomposed the annual input variables like the net head of the 
turbine, and flow rate of water into a certain number of detail signals through artificial neural network (ANN) 
transform. ANN model used to predict the annual power generation. After the stationary simulation prediction 
model is obtained, the prediction results were superposed. Finally, simulation results have demonstrated the 
robustness and effectiveness of this new approach when compared with the existing one. 

Index Terms—Small Hydropower Plant; Artificial Neural Network; Prediction; Himreen Lake Dam   

I. Introduction 

For generating power, hydroelectric power is the most widely used renewable sources of energy. Hydro power 
generation depends on the available flow and altitude from which it falls [1, 2]. The main components of soft 
computing and Artificial Neural Networks (ANNs) [3]. Artificial Neural Network techniques can be used for 
modeling on the hydro generation scheduling extent at a certain point. These techniques are less subjected to the 
constraints of physical description and ability to map the logical input/output relations [2, 3]. the ANN model 
performs in some cases better than the physically-based models [4]. 

Several related works include two main techniques like ANN using different case studies in hydro power 
generation to forecast stream flows using hybrid wavelet-neuro-fuzzy model [5], modeling daily discharge [3]. 
Prediction using neuro-fuzzy approach for Short-term water level [2], and long term [6], and automatic generation 
control of multi-area power system [7]. Hybrid neuro-fuzzy approach for automatic generation control [8], modeling 
for three-phase [9], and predict speed [10, 11]. Rough artificial neural network using for classification [12-14], 
Modeling of ANFIS [15, 16], and prediction [17, 18]. 

From a modeling viewpoint, a Hydropower operation is a unpredictable [9], complex [3] due to the stochasticity 
of hydrologic variables [19], non-linear system [20] due to uncertainty of the process [1], non-minimum phase 
system [9, 20], uncomfortable for managers and operators because of the complicated optimization techniques used 
in the models [19]. In addition, modeling hydropower systems, based on a power generation approach, usually 
requires a large number of input data, which are not readily available [2, 3]. Therefore, other models such as ANN 
rule-based models have been suggested to overcome these limitations [19]. Since the development of hydropower 
prototypes is costly, it is better to model by ANN model [9]. 

An enhanced neural network for optimal control is proposed, a new algorithm to realize the feature selection, 
with the intention to use the rough set as a tool for structuring the artificial neural network (ANN) by automatically 
computing the proper modelling thresholds instead of choosing them. On the other hand, it is to determine spatial 
distributions of input parameter values. In return, make output parameter values of the intermediate stations. 
moreover, because of the numerous parameters of ANN and the proposed to solve the optimized parameters 
selection problem. 

II. Methodology 
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A. Hydropower function 

The hydro-turbine obtains mechanic hydropower and changes it to rotational power mechanically and it's 
coupled to an electric power generator. Actually, the turbine efficiency depends on the turbine's power, the turbine's 
type, fluid percentage, etc. Kaplan turbine may be observed that its efficiency is reaching to the maximum value for 
a various flow rate of water, proving these kinds of turbines can be desirable for a river with a variant in the regime 
of water flow rate. In general, the electrical power generators employed in small hydropower plant (SHP) are 
synchronous machines which generate electrical power by alternating current. Where, this synchronous machine has 
been strongly linked up with the turbine shaft to convert the mechanical rotational energy into electrical power [21-
24]. 

The electric power output of a hydro generating unit i can be described by means of Eq. (1), which is known as 
the hydropower function: 

                                                                            (1)-3Pp =10 × Nh × Fr × × g ×i i i i   

where 10−3 is a constant used to convert W into KW. According to Ref. [25-27] ,  ,g depends on the plant 

location, i.e., its latitude and elevation relative to the sea level: 

 
-629.7803 1 0.0053 sin - 3 10                                                       ( 2 )g lcri         

The water density ,  ,  is a function of the water temperature ,  ,T e  and the elevation relative to the sea level. 

This parameter is calculated, according to Ref. [25-27], as follows: 
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For real-time operation, the turbine hydraulic efficiency ,  ,i  may be determined by means of two methods, 

which are also detailed later. Finally, related to the hydropower function (1), 

                                                                                                             ( 6 )
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The turbine losses ,  ,itl  and the generator losses ,  ,igl must be defined. The ,  ,itl are obtained by field tests 

and may be divided into three parts: losses due to mechanical friction in the guide bearings, losses due to shaft seals, 

and losses due to the thrust bearing. The first one is modeled as a function of  igop . The portion due to shaft seals 

is assumed constant. The losses due to the thrust bearing , ,ibl are obtained in field tests, in which a curve relating 

the losses with ,  ,igop is obtained. The ,  ,itl are divided into two parts, related to the turbine and the generator 

of unit i [2, 22, 28], according to equations below: 
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                                                                                   ( 9 )

                                                 

W g i
D g  =              i W g + W t + B ti i i

W t + B ti i
D t  =           i W g + W t + B ti i i

                                ( 1 0 )    

Considering Eqs. (9) and (10), the thrust bearing losses related to the generator ,  ,g
ibl and related to the turbine 

,  ,m
ibl  are defined as: 

                                                                                                          (11)
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Considering Eq. (1), the turbine input power ,  ,itip turbine output power ,  ,itop generator input 

power ,  ,igip and generator output power ,  ,igop are defined as: 

                                                                          ( 1 3 )
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B. Himreen Lake Dam (HLD) Hydropower Plant  

1) Dataset collection 

Himreen lake dam small hydropower plant is located in Diyala/Iraq that serves to produce electrical power for 
feeding power to the people beside it. Measurements of the parameters that include upstream, downstream, net head, 
flow rate, and power production have been collected over a 12-year period, and the obtained data were from 1st 
January of 2005 to 31th December of 2016. This duration was properly acceptable, and it includes all seasons, which 
cover all the different possibilities in the work variables because all over the historical data are taken out on a daily 
reading basis. These historical data have brought and been checked from two ministries (The two ministries of water 
resources and electricity in Iraq) since the dams and hydropower plants are a related field between these ministries. 
Thus, the data used are reliable due to checked from two specific destinations. Production data of small hydropower 
plant (SHP) actually have a complicated and nonlinear relation and may be contained irregular and loud data. And 
the measurement of the variable data is commonly changed that creates values of unrelated variables [28, 29]. Main 
design parameters of the hydropower plant are included in Table 1. 

2) Actual observed system operator (AOSO)  

The AOSO has variable parameters of himreen lake dam (HLD) hydropower plant. Where there are some 
relations between them. In a direct relationship, as one variable increases, the other increases, or as one decreases 
the other decreases. On the other hand, the type of relationship whereby if there is a change in one variable, then 
there will likely be a corresponding change in the other. This is a special form of linear relationship that gives us a 
changing our equation of a line. 

All variable parameters of hydropower plant can also be referred to as a positive relationship because this 
corresponding change in the other variable is typically in the same direction. Often, a special form of direct 
relationship called a directly proportional relationship where the variables are increasing or decreasing at the same 
rate. Figs.1 (a), and (b) shows the coordinates point on the curve of net head and flow rate vs. power production.  
The range of net head and flow rate vs. power production do indeed a linear relationship. 
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Therefore, the increase of flow rate ,  ,h
iFr and net head of turbine ,  ,h

iNh directly effects on power 

production, it can prove that by taking any different two points and compare with them. Moreover, there is an 
obvious relationship and direct linear proportionality with a high slope which leads to a strong increase in power 
production in any small change in the flow rate of water and net head of turbine when other variables are fixed as 
illustrated in Eq. (17) and Eq. (18). 

 

Figure 1(a). The relationship between flow rate of water and power production 

 

Figure 1(b). The relationship between net head of turbine and power production 

                                                                                                       ( 1 7 )
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3) Standard system operator (SSO) of HLD hydropower plant 

The SSO built in the initial created values randomly which is corresponding to limitations of input variable 
parameters of hydropower system production. It's controlled by limitations which are according to standard system 
information. Whereas, Rand function is used for this purpose which generates a controlled random number in 
specific ranges. It’s depending on the limitation of minimum and maximum allowed of the net head of turbine and 
minimum and maximum allowed of water flow rate as illustrated in Eq. (19) and Eq. (20) respectively. 

                                                   (1 9 )

                                                       (2 0 )

s s , m in s , m ax
N h = R an d [N h , N h ]              

i i i

s s , m in s , m ax
F r = R an d  [F r , F r ]             

i i i

 

4) Implementation the SSO by Matlab: 

The flow rate of water ,  ,s
iFr Includes 4015 rows and 1 is a column. 170 is a maximum range (stop point) and 

8 is a shift range or it's a (start point). Rand function generates numbers between 0 and 1. So, the 178 is the 
maximum range and 8 is the minimum range. Total range period is 170 from 8 to 178 as illustrated in Eq. (21). 

Moreover, net head of water ,  ,s
iNh is also executed by rand function with a total range period is 30 from 14 to 

16 as illustrated in Eq. (22). The SSO is more valuable due to it is created controlled random values with four 
decimal randomly depending on system standard information data [30].  
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5) Himreen lake dam (HLD) application 

The gravity acceleration ,  ,g depends on the plant location ,  , and the runner diameter of Kaplan 

turbine ,  ,ilcr  HLD hydropower plant latitude runner and its turbine diameter will be 34.187999° and 9 m 

respectively. Thus, the gravity acceleration ,  ,g = 9.7966 (m2/s) as illustrated in Eq. (2). Standard air pressure or 

International standard atmosphere 0,  , for HLD is 101,325 Pa is between 0 °C to 100 °C as well as the Constant of 

Materials science and manufacture ,  ,imsm  is 2.2558×10-5. There is no shutdown of the Himreen Hydropower 

plant and it can work continuously for all year times due to water temperature range ,  ,h
iTe is from 0 °C to 55 °. 

Moreover, the maximum water density (ρ) is 999.97 which corresponds to water temperature ,  ,h
iTe that equal to 4 

°C. 

 

Table 1. Main design parameters of the hydropower plant [29, 31] 

Hydropower plant parameter  AOSO / SSO 

Maximum net head of turbine (m)  

Minimum net head of turbine (m) 

Maximum upstream (m) 

Minimum upstream (m) 

Maximum downstream (m) 

Minimum downstream (m) 

Number of turbine-generating units  

Type of turbine-generating units  

Number of penstocks 

Maximum Flow (m3/s)  

Minimum Flow (m3/s)  

Power (MW) 

Maximum power(MW) 

Minimum power(MW) 

Maximum Reservoir volume (m3) 

Minimum Reservoir volume (m3) 

Maximum hydropower efficiency  

Minimum hydropower efficiency 

29.84 / 30.8 

14.7/14 

101.8 

92 

75 

70 

2 

Kaplan-synchronous  

2 

174 / 178 

8/8 

36.4 

44 (2×25) / 50(2×25) 

8/8 

3.95×109 

1.5×109 

94.1 

98.9 
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C. Identification and Properties of ANN Models 

The majority of ANN models consist of three layers, the architecture of these models are input, hidden and 
output layers. Each layer is additionally formed neurons of the artificial network named as nodes. Allover well-
known parameters information regard as an input to the input nodes. In return, these input nodes send forward this 
information to all over hidden layer nodes. Hidden nodes received the information through overall input nodes and 
then the node of bias in the input layer is gathered as illustrated Eq. (23); 

                                      ( 2 3 )
1

j n
x w i w bH h j j h b ij


 
  

where ,  ,HX is the gathered input ,  ,hiW is the general weight between input and hidden layer ,  ,hbW is the 

general weight between hidden and bias node of the input layer ,  ,b  is the bias node of the input layer ,  ,i  is the 

input node. Then, mathematically ,  ,HX  is preceded by using the activation function. The more commonly 

network employed in ANNs is the Multi-Layer Perceptron (MLP), The Single-Layer Perceptron (SLP) algorithm. 

The method of Root Mean Square Error (RMSE) is most commonly used for indication of predicting errors in 
overall training vectors. It's very valuable to make comparison among different models and it also illustrates the 
ability of the network to predict the accurate output as presented in Eq. (24). Mean Bias Error (MBE) and Mean 
Absolute Error (MAE) were employed to make filtering in the most likely optimal networks on two cases training 
and checking data sets. Training and checking of the network performances are resolved by taking the considered 
outcomes of both functions as presented in Eq. (25) and (26) respectively. The correlation coefficient (R2) is widely 
used to check the predictions of output accuracy level. It was computed to choose the best and right network as 
presented in Eq. (27). 

Where ,  ,ih and  ,mh are the real and forecasted output values respectively, for all the ,  ,thi training vectors 

and ,  ,N  is the entire values of training [32-34]. 
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where ,  ,UX is the weighted algebraic summation of inputs into the transfer function? Where the hidden layer 

working is computing the outputs through the inputs and forwarding all to the output layer as inputs automatically. 
Eq. (28) was approved to be the logarithmic sigmoid function, which is the most commonly used for neurons 
activation function and a created for the slope and construction activation of ANNs. Thus, this makes equilibrium 
between linear and nonlinear performance [35, 36]. The output variable of the logarithmic sigmoid function is 
limited from 0 to 1, which is regularly selected by using the signal whose output variety range is between 0 and 1. 
All vectors in Eq. (29) are a normalized function that employed to obtain the feature standards of values between the 
ranges from 0 to 1 before fusion individuality by using all min values and all max values in normalization method. 
On contrary, the de-normalized method can be used to get the original data values for all vectors that given in Eq. 
(30) [37, 38]: 
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1) AOSO modeling elaboration using ANN  

Because (i) a sufficient quantity of data has been acquired, (ii) the interaction between the inputs and the output 
of a Small Hydropower Plant (SHP) model (power curve) is non-linear, and (iii) analytical solutions to the impact of 
many parameters could not be found, ANN seemed to be a logical technique for modelling the power curve of a 
SHP. A feed forward neural network (also known as a multilayer perceptron (MLP)) with back propagation 
algorithm was therefore implemented. There is model (power curve) become more complex. For this reason, and 
because of the fact that interaction between independent variables has been depended on the power production rule 
in Eq. (1), modeling by means of successive steps single - stage modeling was developed. the power output is 
modeled according to Eq. (1) input variables with the net head, flow water rate, efficiency, and gravity acceleration. 

2) Efficient modeling prediction 

The ANN model was used to model the power production. The measured values of these inputs over the span of 
the experiment. The network was evaluated by comparing the network predicted outputs with the actual power 
production. To select the best model can be regarded the one that has lower functions of Root Mean Square Error 
(RMSE), and Mean Absolute Error (MAE) which correspond to the template whose sequence provided overnights is 
closer to the actual power production, or can select the model with the highest regression (R) corresponding one 
whose sequence forecasts of power production follows best variations of the behavior of actual power production. 
Not always the model with the best MAE (lowest) present a better R (higher). The results of the derived SLP and 
MLP ANN models are shown in Table 2. According to Table 2, the best result in the ANN91 model. It has 
completely created by using trial and error method. 

Table 2. Derived SLP and MLP ANNs 

MAE 
 

MBE 
 

RMSE 
 

R2 network  type models 
all test validation train topology   

0.0372 0.0034 0.0680 0.94916 0.95822 0.92009 0.9531 1*1 SLP 1 
0.0315 -0.0013 0.0624 0.95698 0.9531 0.96648 0.95619 4*1  4 
0.0287 -0.0015 0.0571 0.96414 0.96472 0.95118 0.9668 7*1  7 
0.0310 -0.0057 0.0633 0.95515 0.95903 0.95676 0.95527 10*1  10 
0.0280 2.5033e-04 0.0574 0.9637 0.963 0.95471 0.96566 12*1  12 
0.0261 5.2182e-04 0.0496 0.97306 0.97169 0.97974 0.97197 15*1  15 
0.0266 7.2810e-04 0.0525 0.96975 0.97301 0.96025 0.97093 16*1  16 
0.0235 -3.2266e-04 0.0477 0.97509 0.97847 0.96482 0.97654 18*1  18 
0.0289 -0.0027 0.0570 0.96433 0.95273 0.95142 0.96926 21*1  21 
0.0213 -2.0099e-04 0.0461 0.97681 0.96572 0.98249 0.97788 23*1  23 
0.0286 -0.0014 0.0581 0.96284 0.95358 0.94768 0.96809 26*1  26 
0.0244 3.5029e-04 0.0483 0.97442 0.97706 0.98009 0.97264 29*1  29 
0.0288 -4.2715e-04 0.0565 0.96486 0.95263 0.9564 0.96914 31*1  31 
0.0281 0.0013 0.0578 0.96331 0.96654 0.9603 0.96327 3*6*1 MLP1 37 
0.0304 -1.6794e-05 0.0624 0.957 0.94047 0.9599 0.95981 3*8*1  39 
0.0321 0.0011 0.0628 0.95651 0.95489 0.95204 0.95781 3*12*1  43 
0.0251 -4.0349e-04 0.0549 0.96639 0.96736 0.9624 0.96739 3*13*1  44 
0.0285 1.2227e-04 0.0531 0.96903 0.96492 0.97369 0.96912 3*18*1  49 
0.0309 -0.0061 0.0621 0.9578 0.96267 0.97216 0.96148 3*21*1  52 
0.0225 3.5804e-04 0.0481 0.97473 0.95557 0.97276 0.97918 3*24*1  55 
0.0297 -5.9712e-06 0.0616 0.95822 0.95444 0.96702 0.95693 3*27*1  58 
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0.0228 0.0011 0.0471 0.97576 0.98149 0.97932 0.97383 3*30*1  61 
0.0295 -0.0050 0.0607 0.95961 0.96439 0.9704 0.95632 5*7*1 MLP2 68 
0.0274 -7.6769e-04 0.0572 0.96407 0.96741 0.95463 0.96545 5*9*1  70 
0.0264 -1.4128e-04 0.0568 0.96449 0.95604 0.96387 0.96639 5*11*1  72 
0.0298 9.9457e-04 0.0592 0.96145 0.95383 0.9697 0.96156 5*14*1  75 
0.0299 5.3349e-04 0.0600 0.96029 0.96855 0.96331 0.95762 5*17*1  78 
0.0274 -0.0023 0.0577 0.96363 0.94873 0.96775 0.96588 5*22*1  83 
0.0250 -7.4538e-04 0.0478 0.97504 0.97999 0.97032 0.97521 5*25*1  86 
0.0262 -5.7994e-04 0.0556 0.96606 0.96663 0.96915 0.96521 5*28*1  89 
0.0204 -4.1496e-04 0.0446 0.97831 0.97771 0.97358 0.97941 5*30*1  91 

D. AOSO model simulation test 

Neural network performance is dependent on the model building parameters such as training. In this particular 
application, the trained neural network demonstrated a generalized pattern learning capability by showing high 
correlations and low prediction errors between pairs of actual power production efficiencies and predicted neural 
outputs for both training and test data sets. The next stage of the experiment is aimed at exploring the nonlinear 
mapping capabilities of ANNs. For the implementation of neural network models, Matlab software was used by 
exploiting its built-in design capabilities. The backpropagation neural network (BPNN) model formed 5-30-1 
network structures for structures model by generating the hidden neurons necessary for nonlinear pattern mapping. 

To build the artificial neural network model, first, begin to build the matrix variables that were more correlated 
with the variable to predict and less with each other were selected and tested for the input layer. It was decided to 
include the input variables to have a significant correlation with the output variable and is highly correlated between 
them. At this stage of the work, the variables that will form the basis for construction of the models and will study 
the behavior for the reporting period. This article aims to model and predict the power production. 

MATLAB R2015a software is used for modeling in this research and the process of preparation of information 
and their use in modeling. After, defining functions for ANN modeled used, like the number of layers and neurons 
in different layers and creating neural networks and training networks according to defined functions. At data 
manager window after finishing the creation of ANN, the export and save the network model is within reach. Then, 
call the save network model by Matlab instruction to display the created model and testing networks according to 
the defined data. 

Once the converged solution of the first ANN has been obtained, defining the matrix data set to let them make a 
creation in workspace window. The input variables have been brought to the model window to use it for test and 
make it as inputs which are according to a variable of Eq. (1). On other hands, The ANN modeling for predicting the 
power production using the net head of turbine, the flow rate of water, efficiency, and ground acceleration as first, 
second, third and fourth inputs to model respectively. It is sequenced correspondingly to the input variables of ANN 
model created form first to fourth inputs to let every input enter to same its position in ANN model created 
according to network inputs sequenced as mentioned before. 

Afterwards, Normalized for the average density of the experimental data. The activation function here to 
normalize the input data to modeling for test and was deployed the logistic function (sigmoid function) with a 
minimum and maximum value of 0 and 1, respectively. On other hands, it is used to convert ever values of every 
input between 0 and 1 as illustrated in Eq. (29). Since the predictor variables have different ranges, the data were 
normalized and scaled down for development and testing. The normalized values were then scaled back to actual 
values to be displayed as output. Then, mixed these four normalized inputs to one ANN model input. 

Subsequently, the power production regards as the output data of ANN model created. It is getting and stored on 
workspace window after applying the de-normalized mode function on its values to let them get back to its real 
values as illustrated in Eq. (30). This is continued for all variables deemed to have a significant impact on the SHP 
modeling. These steps can be repeated as long as relevant variables are available. For example, if in the future the 
SHP is characterized, this parameter could be modeled without having to repeat the entire process. Fig.2 illustrates 
all stages ANN modeling process, the characteristics the test on ANN model, and evaluating the performance of the 
neural network. 
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Figure 2. The architecture of the artificial neural network (ANN) modeling in the testing process 

In general, the creation of ANN model should correspond exactly the actual model virtually in principles of its 
affections', parameters' and times' so as to get the typical model. Firstly, Entire time is regarding as the modeling 
time totally in simulation, which indicates to the extent of the total time for twelve years. Since there are input-
output variables data has been observed daily and every day is equal to 1440 minutes. Thus, the entire time is started 
from 1440 minutes for the first day. It continues increasingly until it arrives at (4.5 × 106) minutes, which is 
equivalent to the total time in minutes. Secondly, the main reason for using the transport delay is making the ANN 
model to account the entire model time by increasing daily time in minutes which equals to every 1440 minutes.  

 

 

III. Result and Discussion 

A. Preliminary tests: training and validation of the ANN models 

Preliminary tests were carried out in order to determine basic parameters needed for the soft computing model 
operation. Models for predicting the power generation of hydropower modeling should be evaluated in a proper 
way. In this study, the models constructed according to the ANN was statistically measured with the following 
index: 

 More than 180 models were tested. The network used in the ANN method was a single and multi-layer, feed 
forward model, where the back-propagation distribution of error algorithm is involved. The ANN model was 
constructed, trained, and tested using the available test data of the AOSO. 

Subsequent to the ANN model development, iteration, and testing, an investigation was undertaken to establish 
its efficacy as a robust system identification tool in the present hydropower generation modeling. To this end, the 
model output was validated against experimental data obtained for all cases of experimentation under the 
hydropower operation paradigm. The credibility of the developed ANN model was evaluated by the statistical 
metrics of R2 and RMSE. For adjudging the model integrity, the additional absolute error metric of MAE has been 
chosen to represent the deterministic error in the model output. 

The results of the derived SLP and MLP ANN models are shown in Table 2. According to Table 2, the best 
result in the ANN91 model. The total iterations in the models were set to 86 and the input layer and hidden layer(s) 
have nonlinear activation neurons (tansig) and output layer has linear neuron (purelin) in the network topology. The 
structure of ANN models is figured out in Fig.3 (a). The great predictive power of ANN91 network was illustrated 
in Fig.3 (b). Training, validation, and testing R2, RMSE, MBE, and MAE of 97.941%, 97.358%, 97.771%, 0.0446, -
4.1496e-04, and 0.0204 made ANN91 network become the best-fit ANN model. Thus, ANN91 network seems to be 
further suitable for predictions the power production.  
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Figure 3(a). Training window of ANN91 model 

 

Figure 3(b). Regression plot of ANN91 model 

B. Arterial Neural Network (ANN) Model 

For testing and validation of the artificial neural network (ANN), the calculated values of R2 are higher than 0.97 
and RMSE is less than 0.044 that indicates adequacy and quite acceptable of the model proposed for prediction of 
the specific hydropower generation. The prediction ability of MLP model indicates the consistent and commendable 
concurrency of the predicted values with the actual values for the entire range of operation. Actually, the sensitivity 
and robustness of the model to predict the values of the specific power generation with an excellent accuracy were 
achieved. 

The purpose of modeling is to perform some necessary simulation tests. These tests demonstrate the accuracy 
and performances of the developed ANN and FANN models. The simulation offers the possibility to have a general 
idea about the small hydropower plant (SHP) behavior and evaluates the simplicity of the proposed models. It is also 
important to know their reliability that means the precision degree that could be given to each model. The proposed 
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model was designed in MATLAB R2015b. Since it's relatively simple with only two variable inputs (net head, flow 
rate) and a single output (power generation). 

Response curves of modeling methods are indicated in Fig.4, in which curve 1 represents the actual observed 
output of the system, curve 2 is the prediction output of ANN modeling test. Simulation curves, it can be seen from 
Fig.4 that the output response of ANN modeling test is the highest and it’s the tracking ability the best, while the 
counterpart of the output result of the AOSO is the worst. The tracking ability of the AOSO falls randomly and it is 
characterized by major fluctuations.  

 

Figure 4. Hydropower generation of AOSO against ANN model 

Empirical Results obtained using the ANN model with four inputs (ANN-4Parameters). The ANN model 
validation consisted of a qualitative comparison of the output result of ANN model against output result of actual 
observed of the system. Having verified that the results did not differ significantly, it was decided to use more than 
ten years validation set. Obviously, the difference values are owing to the flow rate is not completely used for 
hydropower generation. On the other hand, the main cause of low hydropower generating is to open the dam gates 
for agricultural irrigation purpose and power generation secondly. Nevertheless, the exact output amounts of 
maximum and middle of hydropower generation of ANN model are totally corresponding to the output of actual 
observed of the system.  Meanwhile, the minimum hydropower generation values have major differences due to a 
very few maintenance workers that are less mature in the power generation safety and they leave the turbine works 
as a default with no power generation and water flow through it at very few periods. Accordingly, these difference 
values are represented to the deficient of hydropower generation in reality. Moreover, it is a loss in hydropower 
utilization. So that, how the himreen lake dam (HLD) hydropower plant can get to the best result values of power 
generation or at least get to the similar result of ANN model test. There is a wide necessary to create a flexible 
control for this purpose. Overall, the results demonstrate the robustness of neural network models regarding sample 
variations by showing high performance on all subsets of network performance on test data. 

IV. Conclusion 

In this study, a new structure of ANN models to stabilize annual hydropower operation have been proposed.  The 
generalized ANN model was applied to describe the hydro generation in the presence of input random variables. The 
experimental and simulation results of the proposed ANN models show the performances and flexibilities for the 
modeling based on this approach. According to the hydro generation stability theory, there are some scenario tests, 
which illustrated in the results section. It has presented to show the exactness of the proposed ANN models 
compared with the output result of the AOSO model. Especially, when the proposed annual hydropower operation 
model is used in the closed loop. In addition, the proposed approximations permit the researchers interested in the 
SHP model to benefit from growth technologies in digital calculators which make synthesis robust modelling easier. 
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