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Abstract— A new fuzzy control method for hydropower generation in the presence of input random variables is 
investigated in this paper. Firstly, they decomposed the annual input variables like the net head of the turbine, and 
flow rate of water into a certain number of detail signals through artificial neural network (ANN) transform. ANN 
model used to predict the annual power generation. After the stationary simulation prediction model is obtained, the 
prediction results were superposed. The superposed prediction results are corrected by using the more relaxed and 
simplified sufficient stability conditions are given as a new set of right-angle triangle membership function 
(RFANN), which have been guaranteed by strict mathematical derivation. Thirdly, the control method has good 
robustness, which could resist the random disturbances. Finally, simulation results have demonstrated the robustness 
and effectiveness of this new approach when compared with the existing one. 
Index Terms— Small Hydropower Plant; Fuzzy Artificial Neural Network; Himreen Lake Dam; Right-Angle 
Triangle Membership Function; 

I. Introduction 
For generating power, hydroelectric power is the most widely used renewable sources of energy. Hydro power 

generation depends on the available flow and altitude from which it falls [1, 2]. The main components of soft 
computing are fuzzy logic (FL) and Artificial Neural Networks (ANNs) [3]. Artificial Neural Network and fuzzy 
logic control techniques can be used for modeling and control on the hydro generation scheduling extent at a certain 
point. These techniques are less subjected to the constraints of physical description and ability to map the logical 
input/output relations [2, 3]. the ANN model performs in some cases better than the physically-based models [4].  

Several related works include two main techniques like ANN, FL using different case studies in hydro power 
generation to forecast stream flows using hybrid wavelet-neuro-fuzzy model [5], modeling daily discharge [3]. 
Prediction using neuro-fuzzy approach for Short-term water level [2], and long term [6]. An adaptive fuzzy 
fractional order proportional integral derivative (PID) control for pumped storage hydro [1, 7, 8], and automatic 
generation control of multi-area power system [9]. Hybrid neuro-fuzzy approach for automatic generation control 
[10], load frequency control [11]. Fuzzy rule-based model for hydropower reservoirs operation [12], optimal multi-
objective [13]. Robust Takagi-Sugeno fuzzy control hydropower system for fractional order [14], modeling for 
three-phase [15], and predict speed [16, 17]. Rough fuzzy artificial neural network using for classification [18-20], 
Modeling of ANFIS [21, 22], and prediction [23, 24]. 

From a modeling viewpoint, a Hydropower operation is a unpredictable [15], complex [3] due to the stochasticity 
of hydrologic variables [12], non-linear system [14] due to uncertainty of the process [1], non-minimum phase 
system [14, 15], uncomfortable for managers and operators because of the complicated optimization techniques used 
in the models [12]. Nevertheless, PID controllers fail to cope with operational constraints. Thus, hydro plant 
operation needs an advanced control [16]. In addition, modeling hydropower systems, based on a power generation 
approach, usually requires a large number of input data, which are not readily available [2, 3]. Therefore, other 
models such as fuzzy rule-based models have been suggested to overcome these limitations [12]. Since the 
development of hydropower prototypes is costly, it is better to model by ANN coupled with FLC model [15, 25].  
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The concept of Fuzzy logic coupled with an artificial neural network appears a promising technique for mapping 
the domain of hydropower operation as per the choice of the operation condition [26, 27]. The fuzzy control method 
is a classic control scheme. The nonlinear model is expressed by fuzzy IF-THEN rules, and the certain region of the 
system state is locally represented by the linearization description. However, the control quality is not very good. 
Besides, the oscillation occurs more frequently before the states become stable. And the conventional FL method 
has little ability to resist external disturbances [2, 14]. The FL doesn’t have the capability of learning and it is 
memory less [19]. An element of a fuzzy set naturally belongs to the set of membership values from the interval [0, 
1] [24]. 

An enhanced fuzzy neural network for optimal control is proposed, a new algorithm to realize the feature 
selection, with the intention to use the rough set as a tool for structuring the fuzzy artificial neural network (FANN) 
by automatically computing the proper membership thresholds instead of choosing them. In return, make output 
parameter values of the intermediate stations. moreover, because of the numerous parameters of ANN with FLC and 
the randomness always exists in the right-angle triangle membership function is also proposed to solve the 
optimized parameters selection problem. 

II.   Methodology 
Hydropower Function 

The hydro-turbine obtains mechanic hydropower and changes it to rotational power mechanically and it's 
coupled to an electric power generator. Actually, the turbine efficiency depends on the turbine's power, the turbine's 
type, fluid percentage, etc. Kaplan turbine may be observed that its efficiency is reaching to the maximum value for 
a various flow rate of water, proving these kinds of turbines can be desirable for a river with a variant in the regime 
of water flow rate. In general, the electrical power generators employed in small hydropower plant (SHP) are 
synchronous machines which generate electrical power by alternating current. Where, this synchronous machine has 
been strongly linked up with the turbine shaft to convert the mechanical rotational energy into electrical power [28-
31].  

The electric power output of a hydro generating unit i can be described by means of Eq. (1), which is known as 
the hydropower function: 

                                                                            (1)-3Pp =10 × N h × Fr × × g ×i i i i   
where 10−3 is a constant used to convert W into KW. According to Ref. [32-34] ,  ,g depends on the plant 

location, i.e., its latitude and elevation relative to the sea level: 

 2 -69.7803 1 0.0053 sin -3 10                                                       (2)ig lcr          

The water density ,  ,  is a function of the water temperature ,  ,T e  and the elevation relative to the sea level. 
This parameter is calculated, according to Ref. [32-34], as follows: 
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For real-time operation, the turbine hydraulic efficiency ,  ,i  may be determined by means of two methods, 
which are also detailed later. Finally, related to the hydropower function (1), 
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The turbine losses ,  ,itl  and the generator losses , ,igl must be defined. The ,  ,itl are obtained by field tests 
and may be divided into three parts: losses due to mechanical friction in the guide bearings, losses due to shaft seals, 

and losses due to the thrust bearing. The first one is modeled as a function of  igop . The portion due to shaft seals is 

assumed constant. The losses due to the thrust bearing , ,ibl are obtained in field tests, in which a curve relating the 

losses with ,  ,igop is obtained. The ,  ,itl are divided into two parts, related to the turbine and the generator of 
unit i [2, 29, 35], according to equations below: 

                                                                                   (9)

                                                 

W g iD g  =              i W g +W t + B ti i i
W t + B ti iD t  =           i W g +W t + B ti i i

                                (10)    

 

Considering Eqs. (9) and (10), the thrust bearing losses related to the generator ,  ,g
ibl and related to the turbine 

,  ,m
ibl  are defined as: 
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Considering Eq. (1), the turbine input power ,  ,itip turbine output power ,  ,itop generator input 

power ,  ,igip and generator output power ,  ,igop are defined as: 
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Himreen lake dam (HLD) hydropower plant  
Dataset Collection 

Himreen lake dam small hydropower plant is located in Diyala/Iraq that serves to produce electrical power for 
feeding power to the people beside it. Measurements of the parameters that include upstream, downstream, net head, 
flow rate, and power production have been collected over a 12-year period, and the obtained data were from 1st 
January of 2005 to 31th December of 2016. This duration was properly acceptable, and it includes all seasons, which 
cover all the different possibilities in the work variables because all over the historical data are taken out on a daily 
reading basis. These historical data have brought and been checked from two ministries (The two ministries of water 
resources and electricity in Iraq) since the dams and hydropower plants are a related field between these ministries. 
Thus, the data used are reliable due to checked from two specific destinations. Production data of small hydropower 
plant (SHP) actually have a complicated and nonlinear relation and may be contained irregular and loud data. And 
the measurement of the variable data is commonly changed that creates values of unrelated variables [35, 36]. Main 
design parameters of the hydropower plant are included in Table 1. 

Actual observed system operator (AOSO)  
The AOSO has variable parameters of himreen lake dam (HLD) hydropower plant. Where there are some 

relations between them. In a direct relationship, as one variable increases, the other increases, or as one decreases 
the other decreases. On the other hand, the type of relationship whereby if there is a change in one variable, then 
there will likely be a corresponding change in the other. This is a special form of linear relationship that gives us a 
changing our equation of a line.  

All variable parameters of hydropower plant can also be referred to as a positive relationship because this 
corresponding change in the other variable is typically in the same direction. Often, a special form of direct 
relationship called a directly proportional relationship where the variables are increasing or decreasing at the same 
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rate. Figs.1 (a), and (b) shows the coordinates point on the curve of net head and flow rate vs. power production.  
The range of net head and flow rate vs. power production do indeed a linear relationship. 

 
Figure 1. (a) The relationship between flow rate of water and power production 

 
Figure 1. (b) The relationship between net head of turbine and power production 

Therefore, the increase of flow rate ,  ,h
iFr and net head of turbine ,  ,h

iNh directly effects on power 
production, it can prove that by taking any different two points and compare with them. Moreover, there is an 
obvious relationship and direct linear proportionality with a high slope which leads to a strong increase in power 
production in any small change in the flow rate of water and net head of turbine when other variables are fixed as 
illustrated in Eq. (17) and Eq. (18). 

                                                                                                       (1 7 )

                                                              

h h
P p s lo p  F r   i i

h h
P p  s lo p  N hi i



                                           (1 8 )

 

Standard system operator (SSO) of HLD hydropower plant 
The SSO built in the initial created values randomly which is corresponding to limitations of input variable 

parameters of hydropower system production. It's controlled by limitations which are according to standard system 
information. Whereas, Rand function is used for this purpose which generates a controlled random number in 
specific ranges. It’s depending on the limitation of minimum and maximum allowed of the net head of turbine and 
minimum and maximum allowed of water flow rate as illustrated in Eq. (19) and Eq. (20) respectively. 

                                                   (1 9 )
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Implementation the SSO by Matlab 

 The flow rate of water ,  ,s
iFr Includes 4015 rows and 1 is a column. 170 is a maximum range (stop point) and 

8 is a shift range or it's a (start point). Rand function generates numbers between 0 and 1. So, the 178 is the 
maximum range and 8 is the minimum range. Total range period is 170 from 8 to 178 as illustrated in Eq. (21). 

Moreover, net head of water ,  ,s
iNh is also executed by rand function with a total range period is 30 from 14 to 16 

as illustrated in Eq. (22). The SSO is more valuable due to it is created controlled random values with four decimal 
randomly depending on system standard information data [37].  
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Himreen lake dam (HLD) Application 
The gravity acceleration ,  ,g depends on the plant location ,  , and the runner diameter of Kaplan 

turbine ,  ,ilcr  HLD hydropower plant latitude runner and its turbine diameter will be 34.187999° and 9 m 
respectively. Thus, the gravity acceleration ,  ,g = 9.7966 (m2/s) as illustrated in Eq. (2). Standard air pressure or 

International standard atmosphere 0,  , for HLD is 101,325 Pa is between 0 °C to 100 °C as well as the Constant of 

Materials science and manufacture ,  ,imsm  is 2.2558×10-5. There is no shutdown of the Himreen Hydropower 

plant and it can work continuously for all year times due to water temperature range ,  ,h
iTe is from 0 °C to 55 °. 

Moreover, the maximum water density (ρ) is 999.97 which corresponds to water temperature ,  ,h
iTe that equal to 4 

°C. 
Table 1. Main design parameters of the hydropower plant [36, 38] 

Hydropower plant parameter  AOSO / SSO 
Maximum net head of turbine (m)  
Minimum net head of turbine (m) 
Maximum upstream (m) 
Minimum upstream (m) 
Maximum downstream (m) 
Minimum downstream (m) 
Number of turbine-generating units  
Type of turbine-generating units  
Number of penstocks 
Maximum Flow (m3/s)  
Minimum Flow (m3/s)  
Power (MW) 
Maximum power(MW) 
Minimum power(MW) 
Maximum Reservoir volume (m3) 
Minimum Reservoir volume (m3) 
Maximum hydropower efficiency  
Minimum hydropower efficiency 

29.84 / 30.8 
14.7/14 
101.8 
92 
75 
70 
2 
Kaplan-synchronous  
2 
174 / 178 
8/8 
36.4 
44 (2×25) / 50(2×25) 
8/8 
3.95×109 
1.5×109 
94.1 
98.9 

AOSO model simulation test 
Neural network performance is dependent on the model building parameters such as training. In this particular 

application, the trained neural network demonstrated a generalized pattern learning capability by showing high 
correlations and low prediction errors between pairs of actual power production efficiencies and predicted neural 
outputs for both training and test data sets. The next stage of the experiment is aimed at exploring the nonlinear 
mapping capabilities of ANNs. For the implementation of neural network models, Matlab software was used by 
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exploiting its built-in design capabilities. The backpropagation neural network (BPNN) model formed 5-30-1 
network structures for structures model by generating the hidden neurons necessary for nonlinear pattern mapping.  

To build the artificial neural network model, first, begin to build the matrix variables that were more correlated 
with the variable to predict and less with each other were selected and tested for the input layer. It was decided to 
include the input variables to have a significant correlation with the output variable and is highly correlated between 
them. At this stage of the work, the variables that will form the basis for construction of the models and will study 
the behavior for the reporting period. This article aims to model and predict the power production.  

MATLAB R2015a software is used for modeling in this research and the process of preparation of information 
and their use in modeling. After, defining functions for ANN modeled used, like the number of layers and neurons 
in different layers and creating neural networks and training networks according to defined functions. At data 
manager window after finishing the creation of ANN, the export and save the network model is within reach. Then, 
call the save network model by Matlab instruction to display the created model and testing networks according to 
the defined data.  

Once the converged solution of the first ANN has been obtained, defining the matrix data set to let them make a 
creation in workspace window. The input variables have been brought to the model window to use it for test and 
make it as inputs which are according to a variable of Eq. (1). On other hands, The ANN modeling for predicting the 
power production using the net head of turbine, the flow rate of water, efficiency, and ground acceleration as first, 
second, third and fourth inputs to model respectively. It is sequenced correspondingly to the input variables of ANN 
model created form first to fourth inputs to let every input enter to same its position in ANN model created 
according to network inputs sequenced as mentioned before.  

Afterwards, Normalized for the average density of the experimental data. The activation function here to 
normalize the input data to modeling for test and was deployed the logistic function (sigmoid function) with a 
minimum and maximum value of 0 and 1, respectively. On other hands, it is used to convert ever values of every 
input between 0 and 1 as illustrated in Eq. (29). Since the predictor variables have different ranges, the data were 
normalized and scaled down for development and testing. The normalized values were then scaled back to actual 
values to be displayed as output. Then, mixed these four normalized inputs to one ANN model input.  

Subsequently, the power production regards as the output data of ANN model created. It is getting and stored on 
workspace window after applying the de-normalized mode function on its values to let them get back to its real 
values as illustrated in Eq. (30). This is continued for all variables deemed to have a significant impact on the SHP 
modeling. These steps can be repeated as long as relevant variables are available. For example, if in the future the 
SHP is characterized, this parameter could be modeled without having to repeat the entire process.  

In general, the creation of ANN model should correspond exactly the actual model virtually in principles of its 
affections', parameters' and times' so as to get the typical model. Firstly, Entire time is regarding as the modeling 
time totally in simulation, which indicates to the extent of the total time for twelve years. Since there are input-
output variables data has been observed daily and every day is equal to 1440 minutes. Thus, the entire time is started 
from 1440 minutes for the first day. It continues increasingly until it arrives at (4.5 × 106) minutes, which is 
equivalent to the total time in minutes. Secondly, the main reason for using the transport delay is making the ANN 
model to account the entire model time by increasing daily time in minutes which equals to every 1440 minutes.   

Fuzzy logic controller (FLC) 
Fuzzy set theory and fuzzy logic establish the rules of a nonlinear mapping. The use of fuzzy sets provides a 

basis for a systematic way for the application of uncertain and indefinite models. Fuzzy control is based on a logical 
system called fuzzy logic. It is much closer in spirit to human thinking and natural language than classical logical 
systems [31, 39]. An FL system mainly consists of three steps: fuzzification, fuzzy inference, and defuzzification. In 
the fuzzification step, the real variables are translated into linguistic variables by using fuzzy set theory. In the fuzzy 
inference step, ‘If–Then’ rules that define the system behavior are evaluated. The defuzzification step translates the 
linguistic result obtained from the fuzzy inference into a real value by using the rule base provided [40, 41]. 

This strategy simply intends to manipulate, at low cost and in normal condition. No predictive control is 
involved, and it works just with a direct relation between the net head of turbine and the flow rate of water. It 
provides a constant output flow for a long time. When the net head is high, the flow rate still provides a constant 
value. However, after a while, the normal conditions cannot be respected. When the net head reaches a too high 
level, the constant output value suffers. Therefore, it takes a long period of time to cope with big change in flow rate. 
Another problem appears when the turbine has a low net head. Then, the constant flow rate consumes the water, so 
the net head in the equalization reaches a very low level. In this case, the strategy used in solve this problem by 
making the flow rate equal to the constant net head.  

The strategy proposed in this article uses an FLC solves all previous problems. It provides a constant output 
value of power generation with in all normal conditions of the net head and flow rate. In this way, the FLC within 
this strategy takes into consideration the net head in addition to providing flow rate value as possible as when 
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conditions allow that. Moreover, the proposed system has a fuzzy rule-based operation model for a dual hydropower 
reservoir which is robust and easy to use by the operators. Generally, the fuzzy rules are formed based on the actual 
historical operation of the reservoir and expert knowledge. The model provides a reliable knowledge base for 
optimum operation of the nominated hydropower reservoir. The methodology for building the fuzzy rule-based 
model is independent of the method employed for expert knowledge base generation. 
Proposed fuzzy artificial neural network (FANN) 

The main objective of the control system is to determine the effectiveness of the proposed FLC by reducing the 
complexity of tuning membership function (MF) for high-performance power generation by providing that the 
suitable the main two inputs parameters; net head of turbine and flow rate of water depending on the operating 
conditions. Researchers studied that triangular type of MF is the best for FLC drive system. Therefore, in this study, 
FANN is considered using triangular MF type for single input and dual outputs as shown in Fig. 2. 

 
Figure 2. Architecture of the fuzzy artificial neural network (FANN) modeling in testing process 

Scenario; right-angle fuzzy artificial neural network (RFANN) 
The changing in input/output parameters according to fuzzy membership makes the minimized FLC suitable for 

a high range of disturbances, but this method it not suitable for highly complex systems, which need different 
triangular shapes. Therefore, a method to change the fuzzy input/output parameters according to the optimal shape 
and boundaries of the membership is required to control high nonlinear systems such hydropower generation 
control. Right angle triangle membership function may be used to overcome the above-stated problem. The 
parameters right angle triangle membership functions are modified to improve the power generation behavior 
especially in the vicinity of the set point. The concept of RFANN controller is to get optimum tuning of membership 
function by assuming the symmetrical triangular fuzzy-number distribution of the parameters and variables. The 
membership function for the maximum hydropower operation decided based on the historical data for the maximum 
net head, flow rate, and power generation. Tuning the width and moving the peak value positions of these right-
angle triangle membership functions towards the positive big (PB) value will cause the stability control to be more 
sensitive to a small change in power generation error and produce a large control. On the other hand, its head always 
towards to maximum and final position for the input/output parameters which is leading to get an optimum outcome. 
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The membership in Fig.3 is the real membership after conversion. Its shape developed using right-angle which is 
create a change on the top of the triangle membership function. Fig.3 represents the membership function of flow 
rate variable and the machinery of crushing and shrinking its values to be bounded between -1 and 1. Repeatedly 
there is an ability to reapply again same rules on the other variables like net head and power generation. 

 
Figure 3. Right-Angle Triangle Membership functions for Flow Rate 

The RFANN method can be applied for a high level of complexity because it gives suitable shape and boundaries 
for the fuzzy system without needing to change in fuzzy memberships. Moreover, it can be applied for any other 
membership. It obviously takes less calculation time for the input-output parameters with respect to minimizing 
fuzzy as well as it doesn't cause increasing the NFA matrix. RFANN controller is less complexity comparing with 
conventional- FLC, which gives best results. 

III.   Results and Discussion 
In the third part of the study, in order to assess the ability of fuzzy artificial neural network (FANN) model using 

the best inputs combination selected in the first application. With a brief theory on the FANN modeling concept 
given in above section, the objective of this work is to obtain hydropower operation with optimal value and zero 
fluctuation from employ three contributions on the FANN model. The network used in the fuzzy inference system 
was a Mamdani type model, which creates fuzzy rules systematically depending on tuning input–output parameters, 
then, developed by NFA and right-angle triangle membership function. The three control methods mentioned earlier 
are simulated by MATLAB software. The preceding testes derived from on the FANN models using the AOSO 
firstly and then the SSO also as input signals, the expected output of the system should also get the optima control 
and operation point in a stable manner. 

Some additional tests were performed around several operating points. They prove the precision degree for each 
proposed FANN model. It shows the validation of the developed approaches for large operating points. Response 
curves of three control methods are indicated in Fig.4, in which curve 3 represents the right-angle triangle 
membership functions fuzzy artificial neural network (RFANN). 

Simulation results of the RFANN controller which was come from combining right-angle triangle membership 
function fuzzy neural network with the NFA are characterized by reliability, it is robust and requires nothing for 
adjusting the parameter of RFANN control. The capacity of global optimization of its own firefly algorithm and the 
new shape of the membership function, allows the system to track the maximum expected output generation 
properly as shown in Fig.4. 
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Figure 4. Hydropower generation of RFANN against AOSO and ANN model 

However, as explained in methodology all case values of hydropower generation get to the optimal point which 
is 44 MW achieves the goal of proposed control. The range of hydropower generation variation for AOSO, ANN 
model, and RFANN model are (0 to 44), (22 to 44), (44 to 44) MW respectively. Since total count observed values 
used for testing is 4015. True positive is a count of all the correctly classified normal values which regard as a 
number of hydropower generation cases which get to the optimal point. The true negative is a count of all the 
correctly classified abnormal values which regard as a number of hydropower generation cases which don't get to 
the optimal point. The true positive values of AOSO, ANN model, and RFANN model are 401, 401, 4015 
respectively. Therefore, the accuracy ratio which achieves the goal of hydropower generation is 10%, 10%, 100% 
respectively as shown in Eq. (40).  

 
  

Accuracy (%)  100                                         (40)True Positive
True Positive True Negative

 
  

IV.   Conclusion 
In this study, two new fuzzy artificial neural network (FANN) models to stabilize annual hydropower operation 

have been proposed.  The generalized FANN model was applied to describe the hydro generation in the presence of 
input random variables. The experimental and simulation results of the proposed FANN models show the 
performances and flexibilities for the modeling based on this approach. According to the hydro generation stability 
theory, there are some scenario tests, which illustrated in the results section. It has presented to show the exactness 
of the proposed fuzzy models compared with the output result of the AOSO and ANN model. Besides, the proposed 
approach can also be adapted to different hydroelectric power plant systems by applying simple test methods. Those 
models can be very useful for synthesizing suitable robust controllers for hydro generation. The robust controllers 
ensure a good power quality of the system. Especially, when the proposed annual hydropower operation model is 
used in the closed loop. In addition, the proposed approximations permit the researchers interested in the SHP 
control to benefit from growth technologies in digital calculators which make synthesis robust controllers easier. 

V.   Nomenclature 
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          portion of thrust bearing losses refer

Bt  i

Dgi

Dt  i ent to the turbine
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          turbine output power
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             turbine loss
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