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Abstract 

     The aim of this research is to study the effect of heat transfer on the oscillating 

flow of the hydrodynamics magnetizing Eyring-Powell fluid through a porous 

medium under the influence of temperature and concentration for two types of 

engineering conditions "Poiseuille flow and Couette flow". We used the perturbation 

method to obtain a clear formula for fluid motion. The results obtained are 

illustrated by graphs. 
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  (Eyring-Powell) تأثير انتقال الحرارة على التدفق التذبذبي للهايدروديناميكا الممغنطة لمائع 
    خلال وسط مدامي مع تغير درجة الحرارة والتركيز

 
، لقاء طارق هادي*ضياء  غازي صالح الخفاجي  

 قسن الرياضيات ,كلية العلوم , جاهعة القادسية , الديوانية , العراق

 

 الخلاصه
الهجف من هحا البحث هو دراسة تأثيخ انتقال الحخارة على التجفق التحبحبي للهايجروديناميكا الممغنطة      

( خلال وسط مدامي تحت تأثيخ درجة حخارة وتخكيد لنوعين من التجفقات الهنجسية Eyring-Powellلمائع )
(Poiseuille  وCouetteاستخجمنا طخيقة الاضطخاب للحصول على صيغة .)  واضحة لحخكة المائع. النتائج

 التي حصلنا عليها موضحة بخسوم بيانية .
1. Introduction  

     Many researchers have been interested in the analysis of non–Newtonian fluids during the past few 

decades. The main concept behind MHD is that magnetic fields can stimulate currents in a moving 

conductive fluid which in turn polarizes the fluid and similarly changes the magnetic field itself. MHD 

plays an important role in different areas of science and technology. Nigamf and Singhj [1] studied the 

flow between parallel plates under the influence of the transverse magnetic field and heat transfer. 

Raptis et al. [2] studied the hydro-magnetic free convection flow through a porous medium between 

two parallel plates. Hamza et al. [3] discussed the effects of the slipping state as well as the transverse 

magnetic field and the radiative heat transfer for the unstable flow of a thin fluid. Khudair and Al-

khafajy [4] discussed the effect of heat-transfer on MHD oscillatory flow for Williamson fluid through 

the porous medium. Migtaa and Al-khafajy discussed the effect of heat transfer on the MHD 

oscillatory flow of Carreau-Yasuda fluid through a porous medium [5]. Hayat and Abdulhadi [6] 

discussed the peristaltic transport of MHD Eyring-Powell fluid through porous medium in a three 
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dimensional rectangular duct.  Hussain et al. analyzed the MHD flow of Powell-Eyring fluid by a 

stretching cylinder with Newtonian heating [7]. Begam and Deivanayaki studied the pulsatile flow of 

Eyring-powell nanofluid with Hall effect through a porous medium in [8]. More details about this 

topic are provided elsewhere [9-17]. 

Recently, a group of researchers described the effects of temperature and concentration on fluid 

movement. Most of these investigations agreed that the increase in temperature increases the velocity 

of the fluid while the fluid velocity changes in an unclear manner with the difference in concentration 

and according to the location of the fluid in the channel [16-21]. 

The present analysis aims to discuss the effects of heat transfer on the oscillating flow of the 

hydrodynamics of magnetizing Eyring-Power fluid through a porous medium under the influence of 

temperature and concentration for two types of engineering flows "Poiseuille flow and Couette flow". 

To our knowledge, this attempt has not yet been explored. 

This paper consists of six sections; section 1, which is the introduction, provides a historical overview 

of the studies that dealt with this topic. Section 2 includes the form of the flow channel with the 

formulation of the governing equations with boundaries conditions and the formula of the Eyring-

Powell fluid equation. In section 3, we review the dimensionless transformations to formulate the 

governing equations in a way that helps in solving them. Section 4 includes problem-solving and 

finding the formula for temperature, concentration, and velocity for the two types of engineering 

flows. In sections 5 and 6, we discuss the results through illustrated graphs and review the most 

important observations that we reached. 

2. Mathematical Formulation  

     Let us consider the flow of an Eyring-Powell fluid in a porous medium of width h  under the effects 

of the electrically applied magnetic field and radioactive heat transfer, as illustrated in Figure-1. 

Suppose that the fluid has very small electromagnetic force and the electrical conductivity is small. 

We are considering Cartesian coordinate system such that ( ( )    ) is a velocity vector in which   is 

the x-component of velocity and y is perpendicular to the x-axis. 

 
Figure 1 Channel format: (i) Poiseuille flow and (ii) Couette flow. 

   The basic equations governing Eyring – Powell fluid are given by: 

The continuity equation is given by:    
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The temperature equation is given by:  
  

  ̅
 

 

   

   

  ̅  
 

   

  

  
 

  

   
(    )                 (4) 

The concentration equation is given by:  
  

  ̅
  

   

  ̅     
 (    )  

   

  

   

  ̅ .              (5)  

     where  ̅ is the axial velocity,   is the density of the fluid,   is the pressure,   is the electrical 

conductivity,    is the strength of the magnetic field, and   is the acceleration due to gravity. In the 

same equations, we can define   as a temperature,    is specific heat at constant pressure,   is the  

radiation heat flux, and   is thermal conductivity. 

𝑈   
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               is heat generation,   is the coefficient of mass diffusivity, (      ) is the angle 

between velocity field and magnetic field strength, and    is the thermal diffusion ratio. 

 The corresponding boundary conditions are given below: 

 

 ̅         ̅         ̅         ̅     (                   ) 
 ̅         ̅         ̅          ̅     (                ) 
                ̅                          ̅       

}                                                  (6) 

  

  
    (    )                   (7) 

where   is the radiation absorption.  

The fundamental equation for Eyring – Powell fluid is  given by: 

    ̅   ,                                                                                              

  ̅       ̅  
 

  
      (

 

  
  ̅)  

     where  ̅ is the pressure,   is the unit tensor,  ̅ is the extra stress tensor,    is the zero shear rate 

viscosity, and   ̅ is the velocity gradient. We can write the component of extra stress tensor as 

follows: 
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3. Method of Solution  
The non-dimensional governing equations are given by:   
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     where   is the mean flow velocity,    is the Darcy number,    is the Reynolds number,   is the 

magnetic parameter,   is the Peclet number,   is the radiation parameter,    is the Schmidt number, 

   is the Soret number,   is the heat generation parameter,    is the mean temperature,    is the 

thermal Grashof number, and    is the solutal Grashof number. 

Substituting equations (7) - (9) into equations (1) - (6) yields the following nondimensional equations: 
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where        ( )                                

    (    )
  

  
    (
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                                                                                        (15) 

With the boundary conditions 

 ( )      ( )                (for Poiseuille flow)                                                          (16) 

 ( )      ( )     .           (for Couette flow)                                                               (17) 

 ( )     ( )    and  ( )     ( )                                                                       (18) 

By Substituting equation (15) into equation (11) after simple algebra, we have:  

  (
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4. Solution of the Problem 

This section contains the solution to the governing equations that is related to the above equations. 

4.1. Solution of the Heat and Concentration Equations 

To achieve this solution, we use the separating variables method, by assuming that  (   )   
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      ( ) for heat equation (13) and  (   )        ( ) for the concentration equation (15), where 

  is the frequency of oscillation with the boundary condition (18) [21]. As a result, we obtain the heat 

equation solution as follows:    

 (   )     ( )    (  )                                                (20) 

where   √        .  
The concentration equation solution is achieved by: 

 (   )  ((
  (              ))

(     )(     )
(        )  

                      

     )     ,                  (21) 

where   √  (     ).   

4.2. Solution of the Motion Equation 

To solve the motion equation for two flows which are “Poiseuille flow and Couette flow”, let 
  

  
       ,   (   )    ( )    .                                    (22) 

where   is a real constant and   is the frequency of the oscillation.  
By substituting equation (22) into equation (19) then simplifying the result we get: 
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We assume a small value of   for the purpose of using the perturbation technique to solve the 

nonhomogeneous nonlinear partial differential equation (23). Accordingly, we write: 

             (  ).                                                                                             (24) 

Substituting equation (24) into equation (23) and applying boundary conditions, then equating the like 

powers of  , yields: 
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4.2.1 Poiseuille flow 
We employ the solution of equation (25) for Poiseuille flow by using boundary condition (16) to solve 

the zero and first orders system.  

I - Zero-order system (  ) 
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II - First-order system (  )  

   
     

    (
  

  
 

  
     

    
)    

 

    
(           

   (
    

  
)
 
)       

with boundary condition    ( )     ( )   . 
III – Zero-order solution 
The solution of the zero-order equation subject to the associate boundary conditions is: 
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IIII – First - order solution 
The solution of the first-order equation subject to the associate boundary conditions is: 
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Hence, the fluid velocity is given by: 

  (   )  (        ) 
   . 

4.2.2 Couette flow 

     In this flow, the lower flake is fixed and the upper plate is moving with the velocity  ℎ. The 
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 boundary conditions for the Couette flow problem are defined as:  

 (0)=0 ,(1)= 0.                                                                                                                
      We simulate Couette flow by using the same previous method that we applied to solve   Poiseuille 

flow in equation (25). The solution is calculated by the perturbation technique and the results are 

discussed with relevant figures.  

5. Results and Discussion 

     We discuss the influence of heat transfer on MHD oscillatory flow for Eyring – Powell fluid 

through a porous medium with varying temperatures and concentrations for two types of engineering 

flows "Poiseuille flow and Couette flow" by using graphical illustrations. The temperature difference 

on both sides of the flow channel affects the fluid movement within the flow channel . The 

temperature difference depends on the parameters of R, Q, Pe and  , as shown in the temperature 

charges. In equation (2) we notice the effects of different  temperatures and concentrations, on both 

sides of the flow channel, on the fluid movement within the flow channel. We provide numerical 

assessments of analytical results and some of the graphically significant results that are presented in 

Figures- 2-23. We used the MATHEMATICA-12 program to find numerical results and illustrations. 

The velocity profile of the Poiseuille flow is shown in Figures- 2-9. Figure- 2 shows that velocity 

profile   decreases with increasing   and   . Figure-3 illustrates the influence of   and   on the 

velocity profiles   on the   axis. It is found that the velocity decreases with the increase of   while it 

increases with the increase of  . As illustrated in Figure-4, the velocity profile   increases with the 

increase of    and   , respectively, while it decreases with the increasing the parameters    and   , as 

shown in Figure-5. Figure-6 illustrates the influence of   and    on the velocity profiles function   on 

the   axis. It is found that by increasing  , the velocity increases, whereas it decreases with increasing 

  . We found that the velocity increases with increasing Da, Pe, Re and Q, as demonstrated in 

Figures-7 and 8, respectively. Figure-9 shows that the velocity increases with the increase of A and 

decreases with the increase of  . The velocity profile of Couette flow is shown in Figures- (10-17). It 

is found that the velocity increases with increasing the parameters  ,   ,   ,  , Da, Pe, Re, Q and A, 

respectively, while the velocity decreases with the increase of  ,     ,   ,   ,    and  .  

Based on equation (20), Figures- (18-19) show that the temperature increases with the increase in  ,   

and Pe, while it decreases with the increase in  . Based on equation (21), the concentration decreases 

with the increase of all parameters, (Figures- 20-23).  

     
Figure 2-Poiseuille flow velocity  profile  for    and     with  A = 0.1,   = 1, Re = 2,   = 2, Da = 

0.8,   = 1,    = 0.7,    = 0.2,        ,        ,    = 1,         
 

 
, t = 0. 5    . 

      
Figure 3-Poiseuille flow velocity  profile  for    and    with               A = 0.1,   = 1, Re = 

2,   = 2, Da = 0.8,   = 1,    = 0.7,     = 0.5,       ,       ,    = 1,       t = 0.5  
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Figure 4-Poiseuille flow velocity  profile  for     and      with               A = 0.1,   = 1, Re 

= 2,   = 2, Da = 0.8,   = 1,    = 0.7,    = 0.5       ,        ,   
 

 
   t = 0.5,  = 2. 

 

 
Figure 5-Poiseuille flow velocity  profile  for     and      with               A = 0.1,   = 1, Re 

= 2,   = 2, Da = 0.8,   = 1,    = 0.7       ,          ,   
 

 
  t  = 0.5,   = 2. 

    
Figure 6-Poiseuille flow velocity profile  for     and      with                A = 0.1,   = 1,    = 

2,   = 2, Da = 0.8,    = 0.7,    =0.5 ,       ,          ,   
 

 
  t = 0.5    = 2. 

           
Figure 7-Poiseuille flow velocity profile for  Da  and      with               A = 0.1,   = 1, Re 

= 2,   = 2 ,           ,    =0.5 ,                 ,   
 

 
  t = 0.5    = 2. 
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Figure 8-Poiseuille flow velocity profile for  Re  and  Q  with              A  = 0.1,   = 1, Da = 

0.8,   = 1            =0.5 ,              ,          ,   
 

 
   t = 0.5,   = 2. 

 

 
Figure 9-Poiseuille flow velocity profile for A  and     with              Re = 2,   = 2, Da = 0. 

8,   = 1            =0.5 ,              ,          ,   
 

 
   = 0.5,   = 2. 

 

  
Figure 10-Couette flow velocity  profile  for    and     with  A = 0.1,   = 1, Re = 2,   = 2, Da = 0.8, 

  = 1,    = 0.7,    = 0.5,        ,        ,    = 1,         
 

 
, t = 0. 5    . 

 

 
Figure 11-Couette flow velocity  profile  for    and    with               A = 0.1,   = 1, Re = 2, 

  = 2, Da = 0.8,   = 1,    = 0.7,     = 0.5,       ,       ,    = 1,       t = 0.5  
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Figure 12-Couette flow velocity  profile  for     and      with               A = 0.1,   = 1, Re = 

2,   = 2, Da = 0.8,   = 1,    = 0.7,    = 0.5       ,        ,   
 

 
   t = 0.5,  = 2. 

  

 
Figure 13-Couette flow velocity  profile  for     and      with               A = 0.1,   = 1, Re = 

2,   = 2, Da = 0.8,   = 1,    = 0.7       ,          ,   
 

 
  t  = 0.5,   = 2. 

 
Figure 14-Couette flow velocity profile  for     and      with                A = 0.1,   = 1,    = 

2,   = 2, Da = 0.8,    = 0.7,    =0.5,        ,          ,   
 

 
  t = 0.5    = 2. 

 
Figure 15-Couette flow velocity profile for  Da  and      with               A = 0.1,   = 1, Re = 

2,   = 2 ,           ,    =0.5 ,                 ,   
 

 
  t = 0.5    = 2. 
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Figure 16-Couette flow velocity profile for  Re  and  Q  with              A  = 0.1,   = 1, Da = 

0.8,   = 1            =0.5 ,              ,          ,   
 

 
   t = 0.5,   = 2. 

 

 
Figure 17-Couette flow velocity profile for A  and     with              Re = 2,   = 2, Da = 0. 

8,   = 1            =0.1 ,              ,          ,   
 

 
   = 0.5,   = 2. 

 

  
Figure 12-Couette flow velocity profile  for  Da  and      with              A = 0.1,   = 1, Re = 

1,   = 2 ,           ,    =0.1 ,                ,   
 

 
         t = 0.5    = 2. 

           
Figure 18 -Influence of    and     on                        Figure 19-Influence of    and     on                

temperature   for  = 2,  = 2, t = 0.5.                  temperature   for                     
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      Figure 20-Influence  of    and    on   Figure 21 Influence  of     and     on                   
concentration for                                concentration for    = 2,  = 2,               
                        .                                                         . 
 

 
     Figure 22-Influence  of     and     on                        Figure 23-Influence  of     and      on     

                                                                                  
           = O.7             .                                           = O.7                    . 

6. Concluding Remarks  
     We discuss the influence of heat transfer on MHD oscillatory flow for Eyring-Powell fluid through 

a porous medium with varying temperature and concentration. Using the perturbation technique, we 

analyzed the velocity, temperature and concentration. We used different values to find the results of 

pertinent parameters, namely Darcy number, Peclet number, Grashof number, magnetic parameter, 

radiation parameter, Schmidt number,  Soret number, heat generation parameter, frequency of the 

oscillation, and Reynold number. The key points are:  

 In the two types of flow. i.e. Poiseuille and Couette, the velocity increases with increasing the 

parameters  ,   ,   ,  , Da, Pe, Re, Q and A, respectively, while the velocity decreases with 

increasing  ,     ,   ,   ,    and  .   

 The temperature increases with the increase in  ,   and Pe while decreases with the increase in  .  

 The concentration decreases with the increase of all parameters. 
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