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ABSTRACT The accurate diagnosis of Alzheimer’s disease (AD) plays an important role in patient treat-
ment, especially at the disease’s early stages, because risk awareness allows the patients to undergo preventive
measures even before the occurrence of irreversible brain damage. Although many recent studies have used
computers to diagnose AD, most machine detection methods are limited by congenital observations. AD can
be diagnosed-but not predicted-at its early stages, as prediction is only applicable before the diseasemanifests
itself. Deep Learning (DL) has become a common technique for the early diagnosis of AD. Here, we briefly
review some of the important literature on AD and explore howDL can help researchers diagnose the disease
at its early stages.

INDEX TERMS Alzheimer’s disease, deep learning, early stage detection and diagnosis.

I. INTRODUCTION
Translational applications of computational neuroscientific
approaches have been proven exceptionally beneficial in
comprehensivemental health trials [1]. Thismultidisciplinary
field of study can helpmodel the biological processes govern-
ing the healthy and diseased states of the human brain and
map these processes into observable clinical presentations.
In the past decade, the rapid increase in high-volume biomed-
ical datasets (neuroimaging and related biological data), con-
current with the advances in machine learning (ML), has
opened new avenues for the diagnosis and prognosis of
neurodegenerative and neuropsychiatric disorders [2]. From
a computational perspective, this recent advancement has
spawned the development of tools that incorporate several
patient-specific observations into predictions and improve
the clinical outcomes of patients suffering from such disor-
ders [3], [4]. The ultimate purpose of these neuroscientific
approaches is to enhance the initial exposure and complete
the treatment plan of individuals in high risk of Alzheimer’s
disease (AD) and AD-related cognitive decline [5], [6].
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For the reasons mentioned above, recent studies have
focused on establishing exceptionally capable approaches
that use ML systems to enhance the examination of AD. The
use of automatic systems capable of differentiating patho-
logical cases from normal cases based on their magnetic
resonance imaging (MRI) scans (i.e., no past hypotheses are
needed) will contribute immensely to the initial diagnosis of
AD [7].

In this study, we review relevant studies that examines AD
and use MRI data, ML and Deep Learning (DL) techniques
with various AD datasets.

The rest of the study is organised as follows. Section II
presents a brief history of AD, such as the dis-
covery of the disease and brain imaging techniques.
Section III describes the movement from ML towards DL
in the AD field. Sections IV and V present a review of
AD modules and datasets, respectively. The conclusion is
provided in section VI.

II. ALZHIEMER’S DISEASE STORY
The history of AD, as presented in this section, is consoli-
dation of finding from AD publications searched in Google
Scholar. Only the latest publications were considered, and
only the papers published between 2008 and 2019 were
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selected. Our research focused on datasets used to examine
AD and mild cognitive impairment MCI) [8], the forerun-
ner of AD. The processes and techniques used by previous
researchers were studied.

A. ALZHEIMER’s DISEASE
In 1910, in the eighth edition of Clinical Psychiatry:
A Text-book for Students and Physicians, Kraepelin discussed
a special group of cases with very severe cell transforma-
tions that involve too many plaques, the death of about
one-third of the cerebral cortex, replacing them with specific
bursts of coloured neurofibrils, and represent the most severe
form of malnutrition. Kraepelin, who offered a description at
a time when the clinical definition of AD was unclear [9],
was the first to coin the condition as ‘‘Alzheimer’s dis-
ease’’. The diagnosis of the Auguste Deter disease (the first
case was introduced in 1906 by the German psychiatrist
Alois Alzheimer) was somewhat ambiguous; after more than
100 years, credible descriptions for the clinical definition of
AD started to surface. The descriptions of AD by Dr. Alois
Alzheimer in 1907 and then by Proskin in 1909, included
senile plaques and neurofibrillary sections [10]. However,
when a patient’s brain was clinically studied, no significant
signs of arteriosclerosis were found, yet they were believed
to be part of the diagnosis of the patient. In 1998, scientists
from the University of Munich Germany and the Max Planck
Institute of Neurobiology in Martinsried found that certain
brain segments may be affected by neurofibrillary cramps
and amyloid plaques [11]. Such research has since been
considered the first reported case of AD; more importantly,
the case meets the criteria as to how AD is defined today.

In 1997, Dr. Gerber and his colleagues from the Psychi-
atric Department of Max Planck Institute of Neurobiology
examined histological cuts from F. Johan whose brain tissues
had been well preserved for over 90 years. The research
was regarded the second reported case of AD. An exami-
nation of the cuts revealed numerous amyloid plaques. The
above research suggests that a mutational analysis of pre-
served brain tissue is practicable. On the 100th anniversary
of Dr. Alzheimer’s historic discovery, his findings were again
confirmed. Figure 1 shows a comparison of a healthy brain
and a brain affected by AD.

AD is currently ranked as the sixth leading cause of death
in the US. Recent estimates indicate also that the disorder
may even rank third (after heart disease and cancer) as the
leading cause of the death for elderly [13]. Clearly, predicting
the progression of AD at its early stages and preventing the
disease from progressing are of great importance. The diag-
nosis of AD requires variousmedical tests and enormousmul-
tivariate heterogeneous data. However, manual comparison,
visualisation, and analysis of data are difficult and tedious
due to the heterogeneous nature of medical tests. An efficient
approach to accurately predict brain conditions is by classify-
ing MRI scans, but this task is also challenging. Nonetheless,
novel approaches have been proposed to diagnosis AD at its
early stages through the efficient classification of brain MRI

FIGURE 1. Progress of AD from MCI to severe AD [12].

FIGURE 2. The estimation of the Alzheimer’s costs of medicare and
medicaid until 2050.

images and the use of label propagation with convolutional
neural network (CNNs) [14]. As reported by the Alzheimer’s
Association in 2019, treatment for AD remain unavail-
able. In US alone, over five million people are affected by
AD [15], [16]; amongst them, 200,000 individuals are
younger than 65 years old. The report indicates that AD is
expected to affect 10 million people, most of them in their
60s by 2050. This report further says that someone is affected
with AD every 67 seconds [17]. Figure 2 shows the estimation
of Alzheimer’s costs (in USD millions) of medicare and
medicaid within the coming 50’s years.

B. BRAIN IMAGING TECHNIQUES FOR
ALZHEIMER’s DISEASE (AD)
Brain imaging techniques can be used to non-invasively
visualize the structure, function, or pharmacology of the
brains [18]. The imaging techniques are generally divided
into two categories: structural imaging and functional imag-
ing [19]. Structural imaging provides information about the
brain’s structure, including neurons, synapses, glial cells, etc.
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FIGURE 3. Example of structural Magnetic Resonance Imaging (MRI) [24].

FIGURE 4. Example of functional Magnetic Resonance Imaging
(fMRI) [25].

Functional imaging provides information about the activities
performed by the brain [20]. The neuroimaging techniques
mostly used for AD are the following:
• Magnetic Resonance Image (MRI): This imaging
technique utilises radio waves and magnetic fields to
generate high-quality and high-resolution 2D and 3D
images of brain structures. No harmful radiations from
X-rays or radioactive tracers is generated. The most
commonly usedMRI for AD cases is the structural MRI,
which measures brain volumes in vivo to detect brain
degeneration (loss of tissue, cells, neurons, etc.). Brain
degeneration is an inevitable progressive component of
AD [21], [22]. Figure 3 shows an example of a structural
MRI used to detect brain atrophy. Alternatively, Figure 4
shows an example of functional Magnetic Resonance
Imaging (fMRI), a widely used method to measure
human primary visual cortex and detect brain topogra-
phy. fMRI provides useful information and data about
the human brain’s activity, i.e., how the brain functions.
fMRI methods, such as brain imaging based on arterial
Blood Oxygenation Level Dependent BOLD) contrasts
and spin-labelling (ASL), are sensitive to the cerebral
metabolic rate of oxygen consumption and cerebral
blood flow (CBF). Figure 5a shows the brain areas of
elderly subjects (AD patients; control), whilst Figure 5b
shows medial temporal activation for the same control
group [23].
Compared to other techniques, Single-Photon Emission
Computed Tomography (SPECT) is more economical
than the other techniques, but it is particularly deli-
cate for the initial examination of changes in cerebral
blood flow [27]. However, this technique remains to

FIGURE 5. a) The brain area in older controls and AD (b) MRI scan brain
in Medial Temproral atrophy [26].

be one of the most popularly used procedures when
analysing cerebral functions. Many studies have shown
that SPECT can preciselymeasure the cerebral perfusion
of patients during AD examination.
A recent study examined 116 patients suffering from
AD. Amongst them, 67 individuals manifested other
neurological issues, 26 individuals manifested non-
Alzheimer’s dementia and 23 individuals were cate-
gorised as age-matched controls [28]. The study was
conducted to associate and examine cerebral perfusion,
cognitive proteins and cerebrospinal fluid (CSF)-tau.
The subjects were divided into dementia and con-
trol case groups. The Mini-Mental State Examination,
the Cambridge Cognitive Examination and a functional
rating scale on symptomatic dementia were used to
classify cognitive functions and functional conditions.
99mTC-HMPAO SPECT scanning was associated with
CSF-tau protein levels. The selected factors enhanced
the examination’s precision, thus rendering the study
reliable. Other previous studies focused on bilateral pari-
etal and temporal hypoperfusion amongst AD patients,
and they found significant correlations in their neuropsy-
chological test outcomes and SPECT conclusions [29].
The authors in [29] found that SPECT is more con-
venient for the examination of AD compared with the
CSF-tau protein.
Figure 6 shows a raw arterial spin labelling perfusion
image of a 70-year-old patient [30]. Given the intensely
stall arterial transit time, the proximal part of the arterial
tree is neither recommended for fit for this type of
research.

• Positron Emission Tomography (PET): This imaging
procedure utilises radiotracers, and the brain’s activities
are analysed as radioactive spheres. Figure 7 shows the
use of amyloid and fluorodeoxyglucose, the most com-
monly used tracers, for AD diagnosis. Certain actions,
such as looking, listening, thinking, remembering, and
working, were considered [32], [33].
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FIGURE 6. General principle of arterial spin labeling [31].

FIGURE 7. PET scan of a brain in normal condition [34].

Acetylcholinesterase was observed when the radioli-
gands C-PMP and C-MP4A were utilised. This finding
indicates a reduction in the temporal lobes of the AD
subjects [35]. The same decline was observed amongst
subjects with MCI, which eventually progressed to AD.
The subjects with AD and neurodegenerative dementia
were further classified. A-beta amyloid-specific ligands
(Pittsburgh compound B 11C-PIB) were used because
the subjects with AD showed improvements relative
to the subjects with frontotemporal lobar degenera-
tion (FTLD) and Parkinson’s disease (PD) [36]. A tem-
poroparietal hypoperfusion impression was observed in
most of the AD subjects in PET. False-positive results,
which do not offer any value to MRI, render SPECT
inconvenient for clinical purposes; by contrast, the use of
neuroreceptors and FP-CIT SPECT are more useful and
convenient because they enable researchers to visualise
discrepancies in the nigrostriatal dopaminergic neurons.
FP-CIT SPECT is an imaging procedure applied towater
diffusion analysis. This method can calculate the posi-
tion, direction and anisotropy of white matter in the
brain. This approach focuses on the discrepancies in
the microstructural architecture of water molecules [37].
Although considerable research has been conducted to
identify CSF-tau biomarker and amyloid levels, the lack
of a unanimous conclusion hinders diffusion tensor
imaging (DTI) from being included as reliable method
for analyzing CSF biomarkers [38].
Figure 8(A) presents the DTI with coloured labels (red:
left–right; green: anterior–posterior; blue: head–foot)
performed with fractional anisotropy.While Figure 8(B)
presents the DTI for AD performed with tractography
analysis, in which regular changes in AD are observed
(blue: corpus callosum; red: uncinate fasciculus; green:
superior lateral fasciculus).

FIGURE 8. Diffusion Tensor Imaging (DTI) in AD [39].

• MRI biomarkers of AD: Biomarkers are regarded as
the medical signs (i.e. the external manifestations of
the medical statuses of patients) that can be measured
precisely [40]. Biomarkers are defined in many differ-
ent ways. For example, the International Program on
Chemical Safety defines a biomarker as an object,
an architecture or a procedure for a body that can be
measured and from which the presence of a disorder can
be concluded [41]. AD biomarkers have the following
properties:

1) Capable of identifying basic characteristics of
AD’s neuropathology;

2) Capable of certifying neuropathologically con-
firmed AD cases;

3) Efficient, capable of identifying initial AD and
capable of differentiating AD from different forms
of dementias;

4) Reliable, non-invasive, easy to implement and
inexpensive.

Three kinds of biomarkers can help further describe
AD: genetic, biochemical and neuroimaging biomark-
ers [42]. In the current study, MRI biomarkers are con-
sidered because of their enormous potential in AD detec-
tion. Structural images from MRI can identify atrophic
modifications that influence the entorhinal cortex and
the hippocampus at the initial phase of MCI, which may
advance to temporal and parietal lobes in AD and affect
the frontal lobes at the final phases of AD. The identifi-
cation of AD and neurons that are still not permanently
impaired can be achieved by utilising functional MRI
and DTI. These two procedures can determine func-
tional connectivity and structural connectivity, and they
add more authority and resources to biomarkers of AD;
however, they still require regulation and authorisation
to ensure clinical utility. These points signify that the
most efficient and the most utilised MRI biomarker for
AD is the structural MRI, specifically when the hip-
pocampus volume is involved.

III. FROM MACHINE LEARNING TO DEEP
LEARNING IN AD
ML has been used in the past decade to detect the MRI
biomarkers of AD. Many ML methods are currently utilised
to improve the determination and prediction of AD. A precise
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FIGURE 9. Categories of Deep Learning architectures.

categorisation of stable MCI versus progressive MCI was
achieved by Haller et al. by analysing 35 cases of normal
controls and 67 cases of MCI with a support vector machine
(SVM) [43]. Segmentation has been emphasised in most ML
processes for bio-image classification, whereas the retrieval
of strong texture descriptions has generally been neglected.
Nonetheless, in many cases, retrieving compelling character-
istics from a complete image can obviate the need for image
segmentation [44]. Most of the early research used classic
texture descriptors, such as Gabor filters and Haralick texture
features [45], [46]. DL has been described as ’a new area of
ML research, which has been introduced with the objective
of moving ML closer to one of its original goals: artificial
intelligence’

The DL structure typically involvesmore than two levels of
abstraction and representation to help understand text, sound
and image data [47]. DL can be classified into two sections,
namely, generative architecture and discriminative architec-
ture, as shown in Figure 9. Generative architecture can be
subdivided into the four sections of Recurrent Neural Net-
work (RNN), Deep Auto-Encoder (DAE), Deep Boltzmann
Machine (DBM) and Deep Belief Networks (DBN), whilst
discriminative architecture can be divided into Convolutional
Neural Network (CNN) and RNN.

Many researchers in the recent past have identified the
scale-invariant feature transform and the local binary pat-
terns as the modern texture descriptors for bio-image analy-
sis [49]–[51]. As these descriptors are developed by humans
to retrieve features from images, they are termed handcrafted
features. A key point in the use of these descriptors is to
pinpoint a portion of an image by using a vector, after which
the handcrafted texture is retrieved. As a type of classifier,
the SVM then receives the descriptions retrieved by the
handcrafted procedure [52]. The most suitable descriptors
retrieve descriptions from a dataset, and many of the most
commonly used and compact descriptors use DL to accom-
plish the desired goal [53], [54]. For this purpose, the CNN
is used to retrieve the descriptions from the images, as shown
in Figure 10. CNNs act especially as a generic characteristics
retriever [55]. Once a deep network is trained on a large

FIGURE 10. An example of Convolutional Neural Network (CNN) [48].

volume of images, multiple levels of representations are pro-
duced. The first-layer features, for instance, resemble Gabor
filters or colour blobs that are often generalizable on many
other image problems and datasets [56].

Deep neural networks may be used with bio-image
datasets, but this approach requires enormous amounts of
data, which in most cases is hard to obtain [57]. The data
augmentation process is the solution to this issue, as it has
the ability to develop the data by customising the initial data
through the application of its own procedure. Some of the
well-known procedures of data augmentation are reflecting,
translating and rotating initial images to produce contrast-
ing depictions [58]. Furthermore, different images can be
obtained by customising the image’s brightness, saturation
and contrast [41], [42]. In addition to data augmentation,
the other most commonly used method is the principal com-
ponent analysis (PCA) jittering. In PCA jittering, some fun-
damental segments are added as they are multiplied by a
lesser number [59], [60]. The main reason behind this process
is to show only the most compatible characteristics of an
image. In the latest research [61], [62], generative adversarial
networks are utilised to blend images that contrast with the
basic ones. This method requires the training of a distinct
network [56], [57].

However, the produced images are not based on the
changes in the image dataset. Other methods are there-
fore selected on the basis of the problem. For exam-
ple, in [63], pointwise multiplications are utilised for the
synthetic-aperture radar images to duplicate speckle noise.
In [64], elastic deformation is adopted to reproduce the act
of stretching in breast cancer treatments.

Another way of exploiting DL is to fine-tune a pre-trained
DL model, such as CNNs, on a new dataset representing a
new problem. This approach exploits the shallowest layers
of a pre-trained CNN. Fine-tuning (or tuning) is a procedure
that continues the training process on a new image dataset.
This method greatly reduces the computational costs involved
in the training process of new datasets, and it is suitable for
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relatively small datasets. Given the reduced computational
costs, another benefit of using fine-tuning is providing oppor-
tunities to researchers to investigate easily the ensembles of
CNNs. These ensembles can be built using more than one
pre-trained CNN and many different parametric sets.

Other studies have employed CNNs merely as feature
extractors [57]. The classification is undertaken using either
SVM with a polynomial or linear kernels and logistic regres-
sion extreme ML random forest or XGBoost and logistic
regression (decision trees) or SVM with various kernel [65].
The results retrieved from CNN classification and those from
other classifiers that merely considered features extracted by
CNN were compared by Shmulev and Belyaev [66]; they
concluded that the latter operates more efficiently than the
former. CNNs can be used on pre-extracted features instead
of applied directly to image data. This case is especially true
when the CNN is directly applied to the outputs of various
regression models or when clinical scores are compared with
other hyperparameters and MRI-based features.

Additionally, CNNs can be applied to non-Euclidean
spaces, such as patients’ graphs or cortical surface images.
Other architectures can also be applied to anatomical MRIs.
Various studies have employed different versions of the mul-
tilayer perceptron, which consists of a probabilistic neural
network or a stack of FC layers. Both supervised (deep
polynomial networks) and unsupervised (deep Boltzmann
machine and AE) structures have been employed by other
studies to extract high-level representations of the features,
whereas SVMs are primarily used for classification [67].

Extensive preprocessing, which usually occurs in
non-CNN architectures, are applied to imaging features,
such as texture, shapes or cortical thickness and regional
features. Besides, embedding or feature selection is fre-
quently required to further reduce dimensionalities. How-
ever, DL-based classification approaches are not restricted to
cross-sectional anatomical MRIs only. Longitudinal studies
can utilise information obtained from different time points
whilst studying the same subject.

Nho et al. [68] implemented an SVM with kernels that
allowed for the switching of amnestic MCI to AD whilst
removing the other subtypes of the prodromal phase of AD.
A 90.5% cross-validation efficiency was achieved in their AD
and NC analyses. In addition, they achieved 72.3% efficiency
in anticipating the progression of MCI to AD. Two processes
were used for the retrieval of characteristics:

• FreeSurfer: a brain segmentation and cortical parcella-
tion software tool.

• SPM5: a statistical parametric mapping tool.

They also reported that the best prediction of MCI pro-
gressing to AD can be achieved for features varying from
24 to 26. In addition, they found that the thickness of the left
entorhinal cortical is the most crucial determinant; the other
two crucial determinants are right hippocampal volume and
apolipoprotein Eε4 status. Hippocampal volume was used by
Costafreda et al. [69] to predict MCI cases that were likely to

progress to AD. Their work comprised 103 MCI cases from
AddNeuroMed. They used FreeSurfer for the preprocessing
of data and SVM for the classification of data by using a
non-linear Gaussian radial basis kernel. They implemented
their model after training it on full AD and NC samples.
Within a year, they achieved an efficiency of 85% for AD
and 80% for NC. They concluded that the consolidation of
entorhinal atrophy can improve prognostic performance via
hippocampal modifications.

Their critical review of several SVM-based research
showed that SVM is a widely utilised method to distinguish
between AD cases and cognitively normal cases and between
stable forms and progressive forms of MCI [12]. Structural
and functional neuroimaging techniques were also used for
diagnosis, progression prediction and treatment prognosis.
Coupéet al. [70] determined five important characteristics to
effectively distinguish stable MCI from progressive MCI:

• Left hippocampus volume
• Right hippocampus volume
• Cortical thicknesses of left precuneus
• Left superior temporal sulcus
• Right anterior part of the parahippocampal

Their work reported 72% efficiency for the ADNI data.
Wolf et al. [71] sampled 138 AD patients, 225 CN cases

and 358 MCI patients to distinguish and predict AD. They
used data from ADNI and practiced on the brain imaging.
They also used neural networks and logistic regression to
distinguish AD cases from CN cases. Comprehensive brain
characteristics were chosen as the parameters. Crucial charac-
teristics, such as volume or thickness, were identified instead
of simply focusing on certain areas of the brain.

• Left middle temporal gyrus
• Left hippocampus
• Volume of the right entorhinal cortex
• Left interior lateral ventricle
• Right inferior parietal lobe

In 2018, Liu et al. [72] suggested the use of cascadedCNNs
because of their ability to progressively analyse different
levels and characteristics of MRI and PET brain images.
No expertise was required, as no image segmentation was
involved in preprocessing the data. This feature generally
serves as the advantage of this approach over the other meth-
ods. In the other methods, the features are retrieved and then
fitted to themodel. Their study involved 100NC cases, 93AD
patients and 204 MCI patients based on the ADNI data.
A 93.26% efficiency was achieved.

Kruthika et al. [73] proposed a content-based image
retrieval system that relied on 3D Capsules Network
(CapsNets), i.e. a 3D CNN, and a pre-trained 3D
auto-encoder technology to detect AD at its initial stages.
They stated that 3D CapsNets are capable of performing
rapid imaging. However, unlike the deep CNN, their method
can only improve the detection. They achieved an accuracy
of 98.42% in distinguishing AD. Basaia et al. [74] examined
subjects from an organisation in which 407 healthy controls
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and 418 AD, 280 progressive MCI and 533 stable MCI
cases were involved. They used CNNs and practiced on
the 3D T1-weighted images. Their dataset was ADNI. They
investigated CNN activity to classify AD, progressive MCI
and stable MCI. 75% accuracy was obtained when CNNs
were used to segregate the progressive MCI patients from the
stable MCI patients. Payan and Montana [75] developed an
algorithm that used MRI scans to evaluate the condition of a
particular patient. They used a total of 2,265 cases, and they
selected the ADNI dataset for their work.

Hosseini-Asl et al. [76] suggested the use of
DSA-3D-CNN, which they found to be more precise than
the other modern predictors in evaluating AD based on the
MRI scans. By distinguishing the AD, MCI and NC cases,
they showed that the retrieval of features can be enhanced
in 3D-CNN. Seven metrics were utilised by the brain extrac-
tion tool for the analysis. They used the FMRIB software
library. Apart from describing the process of using the data,
this library contains tools to facilitate MRI, fMRI and DTI
brain imaging data. PET was used to classify head MRIs into
brain and non-brain images by removing non-brain tissues
(an important aspect of any analysis). Preprocessing was not
needed in BET, and the process was not time-consuming.

IV. MODULES DATASETS TYPES FOR AD
This section explains the dataset modules and the types of
AD. The widely utilised types of data are the neuroimaging
file formats. First, the AD dataset module loads the scans,
then the image data from theNeuroimaging Informatics Tech-
nology Initiative (NIfTI) are utilised [77]. NiBabel (one of the
classic packages of Python) is configured by using pip. The
NiBabel images are composed of the following:

• Image data array: 3D or 4D array of image data.
• An affine array: details about the image location.
• Image metadata: describes the image.
• Uniform dataset (UDS): The data in this dataset are gath-
ered by evaluating the cases from the National Institute
on Aging-Funded Alzheimer’s Disease Centers. Evalua-
tion is carried out annually. Each year, the cases undergo
clinical examination to determine the neuropsychologi-
cal testing scores. Nearly 60% of all UDS cases have
the apolipoprotein E genotype. The UDS can utilise
structural MRI images and data for the cases, and it
can subsequently implement enhancements by focus-
ing on the latest factors emphasising frontotemporal
lobar degeneration. More work is being conducted to
enable researchers to obtain different types of images
and biomarkers from biospecimens (i.e. CSF).

• Neuropathology dataset: This dataset contains standard-
ised neuropathology data from patients who died and
whose bodies were autopsied.

• Minimum dataset: Prior to the establishment of UDS
in 2005, cross-sectional data on cases from the
Alzheimer’s Disease Center were gathered through pre-
vious research.

Second, we need to determine the main types of AD,
beginning with the datasets from the Alzheimer’s Dis-
ease Neuroimaging Initiative, Harvard Medical School
and Max Planck Institute Leipzig (Mind–Brain–Body
Dataset-LEMON).

A. ADNI
The ADNI dataset was gathered from over 40 radiology hubs,
and it comprised 509 cases in total (137 AD cases, 76 MCIc
cases, 134 MCInc cases and 162 CN cases) [78]. The time
frame to supervise the transition to ADwas 18months. ADNI
was previously utilised in many studies to categorise AD and
understand the transformation to AD. The basic purpose of
ADNI is to determine if serial MRI, PET other biological
markers and clinical and neuropsychological estimations can
be combined to calculate the advancement of MCI and initial
AD.

The ADNI dataset was built on the T1-weighted struc-
tural MRIs captured at 1.5T in concordance with the ADNI
acquisition protocol. The standard data of the patients were
examined. Additional preprocessing was performed, includ-
ing image re-orientation, cropping, skull stripping, image
normalisation to the Montreal Neurological Institute stan-
dard space (MNI152 T1, 1 mm brain template) and tissue
segmentation into grey and white matter probability maps.
The volume of the MRI was 121 × 145 × 121 voxels.
These volumes were used by the ML systems to perform
the categorisation functions, such as AD against CN, MCIc
against CN and MCIc against MCInc. The performances of
the classifiers used for the grey matter tissue probability maps
were correlated with those used for the white matter and
whole-brain volume maps. Twentyfold cross-validation was
used for the validation.

The MRI dataset of the ADNI consisted of 260 patient
cases (130 AD cases and 130 CN cases). Prior to this pro-
cessing of this dataset, the approach of Carli et al. [79] was
used to determine AD. The characteristics of AD, including
voxel cluster and voxel volume, were retrieved and utilised in
this study.

The data in the ADNI1 dataset were obtained from a
repository, as suggested by Anna et al. The details are tab-
ulated in Table 1. All of the data were captured at 1.5T and
used to obtain the maximum data for training and testing.
In ADNI1 studies, follow-ups are not generally required,
as the work entails the searching of variations amongst groups
of patients. However, follow-ups are required when changes
in MCI patients need to be depicted. The obtained data were
documented in Excel spreadsheets.

B. HARVARD MEDICAL SCHOOL DATASET
The Harvard Medical School dataset comprised T2-weighted
brain MR images, and almost all of the selected images were
from the dataset. The images all have the size of 256 × 256
pixels. The 613 images were split into two AD categories
(27 images for the normal category and 513 images for
the abnormal category) and then utilised for training and
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TABLE 1. ADNI1 standardized data collections for 1.5T.

validation [80]. The normal category contained two cases,
whereas the abnormal category contained 40 cases. As shown
by the current dataset, the abnormal images correspond to
cerebrovascular, neoplastic, degenerative and inflammatory
diseases. Embolic infarction, diffusion and acute stroke fall
under the cerebrovascular disease.

C. MAX PLANCK INSTITUTE LEIPZIG MIND-BRAIN-BODY
DATASET-LEMON
A dataset was created to examine mind, body and emotion
interactions for the 2013–2015 period in Germany [81].
The mind–brain–body dataset of Max Planck Institute
Leipzig comprised 228 subjects divided into two cate-
gories: young (N = 154, 25.1 ± 3.1 years, 20–35 age
range, 45 females) and old (N = 74, 67.6 ± 4.7 years,
59–77 age range, 37 females) [81]. The dataset was cre-
ated over two days, during which patients underwent the
following major processes: MRI at 3T fMRI, quantitative
T1magnetisation-prepared rapid gradient echo (MP2RAGE),
T2-weighted fluid-attenuated inversion recovery (FLAIR),
susceptibility-weighted imaging(SWI), susceptibility map-
ping (QSM), diffusion-weighted imaging (DWI) and
62-channel electroencephalogram experiment at rest [82].
Blood pressure, heart rate and pulse anthropometrics were
collected in all the tests. Blood samples, urine samples and
respiration rate were frequently collected. By utilising the
standardised clinical interview guide for DSM IV (i.e. Hamil-
ton depression scale and the borderline symptom list) [83],
the institute was also able to examine psychiatric syndromes.
The whole process of identifying psychiatric syndromes
required six tests and 21 questionnaires.

D. NATIONAL HEALTH AND AGING TRENDS STUDY
In response to the increasing number of cases, the National
Institute on Aging-Funded Alzheimer’s Disease Centers
instituted in 1999 the National Alzheimer’s Coordinating
Center (NACC) whose purpose in to facilitate research ini-
tiatives [84]. NACC, in coordination with the Alzheimer’s
Disease Genetics Consortium and the National Centralised
Repository for Alzheimer’s Disease and Related Dementias,
offered precious resources for the exploratory and explana-
tory aspects of the research work.

E. OPEN ACCESS SERIES OF IMAGING STUDIES(OASIS)
Dr. Randy Buckner (Howard Hughes Medical Institute)
developed datasets for the Open Access Series of Imag-
ing Studies at Harvard University, the Neuroinformatics
Research Group at Washington University School of
Medicine and the Biomedical Informatics Research Net-

FIGURE 11. Sample images from the Open Access Series of Imaging
Studies dataset [86].

work [85]. The dataset involved 416 cases of 18- to 96-year-
old subjects and 100 cases of subjects older than 60 years old.
Figure 11 shows a sample of brainMRI images from theOpen
Access Series of Imaging Studies dataset.

V. CONCLUSION
Overall, on the basis of high-level literature review, we found
that the published papers in this area tend to focus on two
main areas of research, namely, biomarkers and neuroimag-
ing, but with increasing interest in image analysis. Although
regarded thorough and extensively conducted, the work adds
little knowledge to the initial detection of AD, as the majority
of selected patients are already known to have AD. This study
reviewed the some of the important related AD datasets and
diagnose techniques and detection. This approach is feasible
for early-stage neuroimaging research.
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