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Abstract: For the design or assessment of concrete structures that incorporate steel fiber in their
elements, the accurate prediction of the shear strength of steel fiber reinforced concrete (SFRC) beams
is critical. Unfortunately, traditional empirical methods are based on a small and limited dataset, and
their abilities to accurately estimate the shear strength of SFRC beams are arguable. This drawback
can be reduced by developing an accurate machine learning based model. The problem with using a
high accuracy machine learning (ML) model is its interpretation since it works as a black-box model
that is highly sophisticated for humans to comprehend directly. For this reason, Shapley additive
explanations (SHAP), one of the methods used to open a black-box machine learning model, is
combined with highly accurate machine learning techniques to build an explainable ML model to
predict the shear strength of SFRC slender beams. For this, a database of 330 beams with varying
design attributes and geometries was developed. The new gradient boosting regression tree (GBRT)
machine learning model was compared statistically to experimental data and current shear design
models to evaluate its performance. The proposed GBRT model gives predictions that are very
similar to the experimentally observed shear strength and has a better and unbiased predictive
performance in comparison to other existing developed models. The SHAP approach shows that the
beam width and effective depth are the most important factors, followed by the concrete strength and
the longitudinal reinforcement ratio. In addition, the outputs are also affected by the steel fiber factor
and the shear-span to effective depth ratio. The fiber tensile strength and the aggregate size have the
lowest effect, with only about 1% on average to change the predicted value of the shear strength. By
building an accurate ML model and by opening its black-box, future researchers can focus on some
attributes rather than others.

Keywords: machine learning (ML); steel fiber reinforced concrete (SFRC); slender beams; shear
strength; gradient boosting regression tree (GBRT); Shapley additive explanations (SHAP)

1. Introduction

Shear failure of reinforced concrete beams is a significant concern due to its brittle
and sudden nature [1]. Traditional steel stirrups used as shear reinforcement have been
shown to enhance shear capacity efficiently as well as prevent concrete failure. However,
incorporating stirrups in narrow, asymmetrical, or congested areas might be challenging.
Placing concrete can become a concern when the spacing between stirrups is small, leading
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to voids in the concrete [2]. Furthermore, traditional stirrups need much labor effort,
resulting in more significant building expenses.

In recent years, steel fibers (SF) have acquired significant impetus when utilized
in suitable volume fractions due to their potential to replace minimum shear reinforce-
ment [3,4]. Therefore, it has been suggested that implementing SF in the construction
industry could provide several advantages. First, SF can enhance the shear resistance by
reducing cracks’ width due to the transmission of tensile loads across diagonal cracks, as
indicated by Dinh [3]. Concrete shrinkage behavior and post-cracking toughness can also
be improved using SF [5,6]. Additionally, the SF inclusion enhances the resistance of the
dowel action, which is due to an increase in the tensile strength of the concrete along with
the reinforcements in the splitting plane [7].

Various experimental and computational investigations on steel fiber reinforced con-
crete (SFRC) have been conducted in the literature to examine the shear strength capabil-
ity [8]. Furthermore, an analysis of the ultimate behavior of SFRC beams was carried out
using finite elements and experimental modeling approach utilizing ANSYS software [9].
Additionally, the shear strength of concrete beams with fibers was predicted using a basic
physical design model developed by Spinella et al. [10], which considered crack width
and shear crack slips. Moreover, utilizing the slenderness ratio, an equation based on
fundamental mechanic principles has been proposed to predict the shear strength of SFRC
beams [11]. Additionally, SFRC has been studied extensively by conducting several shear
experiments on prismatic beams [12].

Several empirical formulas for estimating the shear strength of SFRC beams have been
developed in prior research during the last four decades. References [13,14] provide an
overview of the most current shear design models and design guidelines for SFRC beams
without stirrups. However, the range of validity of such empirical models is limited, which
constitute a significant disadvantage. These models are built on the basis of a small number
of data specimens, and their accuracy, when applied to additional data cases that fall beyond
their range of validity, is arguable. According to a comparison made by references [13,15], it
is still challenging to accurately predict the shear capacity of SFRC beams using the various
shear resistance models for SFRC. In addition, shear strength predictions from different
methodologies differ from one another and still differ from experimentally determined
shear strengths. Given these uncertainties, a proper assessment of the reliability of SFRC
beams in the event of shear failure is essential. For this, the predictive model must show
the highest possible accuracy and the lowest possible variability.

An increase in the use of artificial intelligence (AI) has taken place in recent years
due to innovations in computing. Machine learning (ML) models are built using exten-
sive databases. As a result, they can significantly increase generalization capacity and
accuracy for measuring the strength of concrete built with various mixing proportions.
Therefore, researchers have been inspired by ML and AI to develop new models that can
effectively predict the shear capacity of SFRC beams, while overcoming the abovemen-
tioned disadvantages. However, despite the emergence of those models, some researchers
have focused on some ML methods rather than others for predicting the shear strength of
SFRC beams. Support vector machines and artificial neural networks (ANNs), for example,
have been widely utilized to predict the mechanical strength of SFRC beams [5,16–20].
Another popular technique utilized for modeling the shear strength of SFRC beams is gene
expression programming (GEP) [21–26]. However, there is still room for improvement of
the prediction of the shear capacity of SFRC beams, even though ANN and GEP algorithms
have been widely utilized in various researches concerning the shear capacity prediction of
SFRC beams.

In this research, a highly efficient and widely used ML technique, called gradient
boosting regression tree (GBRT), is adopted to simulate the process of predicting the shear
strength of SFRC beams. GBRT is a powerful ML technique that employs several weak
learners and is specifically intended to minimize overfitting issues [27]. Recent research
has shown that GBRT shows an excellent prediction performance when compared with
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other ML algorithms [28–30]. Many researches have used GBRT to tackle civil engineering
challenges [31–34].

While some ML-based techniques, such as random forest, neural networks, and sup-
port vector machine, can effectively solve regression problems, their operation is difficult to
comprehend as these models are often referred to as “black-box” models [35]. As a result,
ML-based models should be better described or interpreted to help researchers to better
grasp the underlying mechanisms, such as how input parameters impact outputs and in-
crease the persuasiveness of the created models. The Shapley additive explanations (SHAP)
framework introduced by Lundberg and Lee [36] can be utilized to understand ML models.
In SHAP, features are quantified based on their impact on the predictions. In addition to
being able to explain the ML models globally, SHAP can also explain the ML models locally
by looking at how the features impact the outputs for a single sample. The research in [37]
used GBRT and SHAP for “Understanding the Factors Influencing Pedestrian Walking
Speed over Elevated Facilities”. Three ensemble ML models were developed by [38] to
predict the creep behavior of concrete, and SHAP was utilized to interpret the predictions
of the models. Last but not least, the XGBoost model was developed in reference [39] for
load-carrying capacity prediction, and SHAP was used to interpret the ML models.

This study proposes an explainable ML-based technique for predicting the shear
strength of SFRC beams. To the best of the authors’ knowledge, the GBRT model is used
for the first time to forecast the shear strength of SFRC slender beams. Furthermore, by
interpreting the ML model through SHAP, variables impacting the shear strength of the
SFRC beams are quantitatively investigated. For this, a database with 330 beam tests, whose
shear strength was reported in the literature, was prepared. In addition, the GBRT model’s
optimal hyperparameters were identified using a five-fold cross-validation procedure.
Additionally, the GBRT model’s performance was compared to other empirical and ML-
based equation models presented by other researchers. Finally, the SHAP approach was
used to interpret the GBRT model that was built. The effects of several factors on the GBRT
model outputs were also explored.

2. Materials and Methods
2.1. Research Methodology

Figure 1 depicts the whole workflow used to develop the suggested approach. The
development of a database with SFRC slender beams was the initial stage. After that,
some engineering features and filtering methods were applied to the gathered data. The
third stage consisted in randomly dividing the data into two sets: one for training and
the other for testing. The GBRT model was trained using the training set, and the model
was validated using the testing set. The appropriate hyperparameters of the GBRT model
were determined by using the five-fold cross-validation procedure during the training
stage, this being the fourth stage. The fifth stage includes using the testing set to verify the
performance of the model after it has been optimized for the hyperparameters. If the model
performance is satisfactory, it can be termed as a final predictive model. During the final
process, the SHAP approach is used to understand the model. Quantitatively, the SHAP
approach was used to examine how features impact GBRT model predictions on a large
dataset (global interpretation) and on a single sample (sample-specific interpretation or
local interpretation). As a result, it is possible to analyze the factors influencing the outputs.

2.2. Dataset

The shear strength of SFRC beams without shear stirrups has been studied in several
experiments. Ref. [13] recently compiled a wide database with 488 experiments on SFRC
beams without stirrups. Non-slender beams with a shear-span to effective depth ratio
of a/d < 2.5 and beams with shear-flexural mode failure were filtered out of the initial
488 trials, leaving a subset containing 330 experimental tests. The database with 330 exper-
iments was used to build the model and is summarized in Appendix A. The evaluation
database contains rectangular and flanged slender beams. The database specimens failed
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substantially by shear compression and diagonal stress with an a/d ratio higher than 2.5.
The experimental database includes shear beams with varying geometry and reinforcement.
Based on several studies [10,11,13,14] and to build an efficient ML model, several critical
parameters that affect the shear strength of SFRC beams were chosen. Table 1 shows
the statistical properties of the evaluation database’s primary parameters. The primary
parameter is the shear strength Vu as the output variable, whereas the beam effective depth
d, beam width bw, longitudinal reinforcement ratio ρ, concrete compressive strength fc,
aggregate size da, shear span to effective depth ratio a/d, tensile strength of fiber ft, and
steel fiber factor Fsf were considered as predictors. The steel fiber factor depends on the
percentage volume Vf, diameter df, and fiber length Lf (Equation (1)).

Fs f =
Vf L f

d f
(1)Buildings 2022, 12, x FOR PEER REVIEW 4 of 24 
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Figure 1. Workflow used to develop the explainable ML model.

Table 1. Statistical measures of the variables.

Statistics ft (MPa) da (mm) ρ fc (MPa) a/d bw (mm) d (mm) Fst Vu (kN)

Median 1100.0 10.0 0.03 40.7 3.4 150.0 251.0 0.55 108.0
Mean 1269.8 10.5 0.03 48.7 3.4 157.9 282.0 0.61 153.2

Minimum 260.0 0.4 0.004 9.8 2.5 55.0 85.3 0.11 13.0
Maximum 4913.0 22.0 0.06 154.0 6.0 610.0 1118.0 3.82 1481.0

Range 4653.0 216.0 0.05 144.2 3.5 555.0 1032.8 3.71 1468.0
Standard deviation 470.3 5.1 0.01 25.8 0.6 68.7 178.0 0.40 168.9

The histograms for the input and output variables from the evaluation database are
presented in Figure 2. In general, the database’s range of parameters matches what can be
found in real design scenarios, as illustrated in Table 1 and Figure 2. Despite the lack of data
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for beams with large sizes, the dataset is thought to be representative of most real-world
applications and design conditions covered by existing design codes.
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Figure 2. Relative frequency distributions for the input and output variables.

2.3. Data-Splitting Procedure

The developed database from the previous section was divided into two parts to
implement the ML model: the training dataset and the testing dataset. The GBRT model was
developed using the training database, whereas the same predictive model was evaluated
using the testing database. As much as possible, a statistically significant association was
ensured between inputs of the training and testing datasets while dividing the database
into subsets. Most of the developed database (80% of 330 tests) was used for training, while
the remaining part was used for model testing (66 tests).

As can noticed from Figure 2, some of the predictors and outcome variables do not obey
the normal distribution curve. As a result, these variables need a feature transformation
to prevent larger numeric ranges from dominating smaller numeric ranges [40]. In this
case, the log transformation was applied to bring right- or left-skewed distributions to
approximately normal distributions. Figure 3 shows the distribution of beams’ effective
depths (d) before and after log transformation.
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2.4. GBRT Model Development

GBRT uses a statistical boosting method to improve the classic decision tree approach.
In this method, instead of creating a single “optimal” model, this strategy aggregates several
“weak” models to generate a single “strong” consensus model [41]. When using GBRT, the
existing residuals are used to build new decision trees sequentially. Fundamentally, this is
a form of a functional gradient descent approach for creating sequential models. Adding a
new tree at each stage reduces the loss function, thereby improving the prediction [42].

Training data are assumed to exist in the form of a training set {(xi, yi)}N
i=1, in which xi

represents the input features and yi represents the shear capacity. For example, the squared
error, the absolute error, the Huber error, etc., are all possible loss functions L(y, F(x)) that
can be used to measure how much the predicted F(x) differs from the true shear strength
y. The GBRT framework assumes that D decision trees will be built, and hence it begins
with an initial model F0(x). For each iteration d = 1, 2, . . . , D, compensating the residues is
equivalent to optimizing the expansion coefficients ρd and αd as shown in Equation (2):

(ρd, αd) = argminρ,α

N

∑
i=1

L[yi, Fd−1 + ρh(xi; α)] (2)

where argmin is an operation that finds the argument that gives the minimum value from
a target function, and L[yi, Fd−1] is a pre-selected feasible loss function measuring the
amount of how the predicted value F(x) deviates from the true response y. The weighting
coefficients and the base learners are fitted to the training data x in a greedy manner
as follows:

Fd(x) = Fd−1 + ρdh(x; αd) (3)

Equation (2), on the other hand, is difficult to solve directly. Even so, since the
gradient-boosting model is additive, ρh(xi; α) may be seen as an increment along h(xi; α).
It is possible to find the optimum αd using the least squares method, based on the principle
of gradient descent:

αd = argminα,β

N

∑
i=1

[ri − βh(xi; α)]2 (4)

where β is a weight factor and ri is the negative gradient evaluated using the previous
model.

ri = −
[

∂L(yi, F(xi))

∂F(xi)

]
F(x)=Fd−1(x)

, i = 1, · · · , N (5)

One-dimensional optimization can be used to further improve the gradient-descent
step size or weight of the obtained decision tree:

ρd = argminρ∑ N
i=1L[ri, Fd−1 + ρh(xi; αd)]

2 (6)

Finally, according to Equation (3), the prior model will be added to the newly evaluated
residue model. Algorithm 1 represents the pseudocode for the generic gradient boosting.
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Algorithm 1. The gradient boosting algorithm.

Input the iteration number D, loss function L(y, F(x)) training set {(xi, yi)}N
i=1

Initialize: F0 = argminρ0
∑ N

i=1L(yi, ρ0)
For d = 1 to D do:
ri = −

[
∂L(yi ,F(xi))

∂F(xi)

]
F(x)=Fd−1(x)

, i = 1, · · · , N.

αd = argminα,β

N
∑

i=1
[ri − βh(xi; α)]2

ρd = argminρ∑ N
i=1L[ri, Fd−1 + ρh(xi; αd)]

2.
Fd(x) = Fd−1 + ρdh(x; αd)
end for
Output: the final regression function Fd(x)

Gradient boosting allows for a wide variety of smooth loss functions, including
AdaBoost, LogitBoost, and L2Boosting [43]. Because of its simplicity and coherence in
solving regression problems, the squared loss function is employed in this study:

L(y, FD(x)) = ∑ N
i=1(yi − FD(xi))

2. (7)

Regularization techniques are typically used during the training stage to reduce
overfitting and to boost the model’s generalization capacity. In the following equation,
Gradient boosting uses a new variable called νd to regulate the model’s update rate, which
is known as shrinkage or learning rate:

Fd(x) = Fd−1(x) + νd · ρdh(x; αd), 0 < νd < 1 (8)

The model is updated more slowly when νd is smaller. According to [44], utilizing
small learning rates leads to better model generalization without shrinkage; however, this
comes at the cost of greater computing time because more decision trees are required.
In addition, numerous additional parameters that are strongly related to the final tree’s
structure and model complexity, such as depths (maximum number of splits) and the
number of trees D, must be fine-tuned to maximize the performance of the model.

2.5. Cross-Validation

The division of the complete dataset into three subsets—training, validation, and
testing—is a standard approach for evaluating the performance of ML models. While
the training set is used to complete the learning process, the validation set tracks the
performance of the model. As a final step, the model’s extrapolation skills are tested by
running it through a set of samples that it has never seen before (testing set) [40]. However,
dividing data into three subsets reduces the size of the dataset, which might result in an
inadequately trained model. As a result, cross-validation is a typical strategy for avoiding
over-reduction of the training set, particularly for small datasets [40]. Cross-validation is
performed in various ways, the most common of which is omitting random data to verify
the model. K-fold cross-validation was used in this research. Cross-validation with K-fold
is a resampling technique that divides data into k subsets, one for validation and the other
k-1 for training.

2.6. Hyperparameter Tuning

The tuning of hyperparameters is an essential step in developing reliable ML models.
Tuning an ML model reduces overfitting and increases the model adaptability to new
data [45]. Choosing the best hyperparameters is also a key component in improving the
accuracy of the model [46]. Many ways to automate hyperparameter selection have been
developed to prevent manual tuning, including grid search and random search hyper-
parameter optimization [47]. The domain of the possible values evaluated in the search
effort distinguishes these techniques from each other. Random search methods choose dis-
tinct hyperparameter values randomly for a given number of iterations, while grid search
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investigates all potential values in a pre-defined domain for the hyperparameters [47].
The Scikit-learn package in Python [48] was used to explore possible values of hyperpa-
rameters using a grid search technique with five-fold cross-validation (GridSearchCV).
Figure 4 depicts the five-fold cross-validation used in this work for training and for the
hyperparameter selection of the model.
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2.7. Performance Metrics
2.7.1. Model Performance Metrics

Various statistical measures, such as R2, mean absolute error (MAE), root mean squared
error and (RMSE), were used to evaluate the performance of the built ML-based models.
For example, the best model has an R2 value close to 1, while RMSE and MAE values are
close to zero. In order to obtain the MAE value, the absolute difference between actual and
predicted values must be averaged. The equation for MAE is the following one:

MAE =

∑n
i=1

∣∣∣yobs
i − ypre

i

∣∣∣
n

 (9)

When the R2 value is 1, the predicted and true/actual values are perfectly aligned. R2

has the following mathematical representation:

R2 =

n
∑

i=1
(yobs

i − y−obs)
2 −

n
∑

i=1
(yobs

i − ypre
i )

2

n
∑

i=1
(yobs

i − y−obs)
2

∈ [0, 1]. (10)

where yi
obs and yi

pre are the actual output and predicted values, respectively, and y−obs is
the average of all observed data.

The difference between the predicted and actual values is the error and the RMSE
is calculated as the square root of the average squared errors. The RMSE is computed
as follows:

RMSE =

√
1
n

n

∑
i=1

(
yobs

i − ypre
i

)2
(11)
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2.7.2. Model Uncertainty Metrics

The model uncertainty, or standard deviation (scatter) of the model error, and the mean
(bias) are used to evaluate the built models. Due to the lack of knowledge of the problem,
conservative assumptions, and mathematical simplifications, the model uncertainty is
defined as a model inability to effectively reflect and express a physical phenomenon (in
this case, the shear strength). The model uncertainty is described as a random variable with
a standard deviation, mean value, and probability distribution in the structural reliability
framework. Shear reliability analysis has been proven to be significantly impacted by it. In
this work, the predictive model uncertainty related to beam x is equal to the ratio between
the experimental and the predicted shear strength, as stated in Equations (12) and (13).

Mx =
Rexp,

Rpred,x(X)
(12)

M(µM, σM) (13)

For a single beam test x, Mx is the model uncertainty. The predictors for the GBRT
model (a/d, d, bw, ρ, fc, ft, da, and Fsf) are represented by X. The mean and standard deviation
of the model uncertainty are represented by σM and µM, respectively.

It is better to choose a model with a mean µM close to 1 and a standard deviation σM
close to 0 for the model uncertainty. µM > 1 indicates that the model underestimates the
shear capacity of the beam specimen and, consequently, underestimates its failure load.
However, if µM < 1, it suggests that the model overestimates the shear resistance.

2.8. Shapley Additive Explanations (SHAP) Framework

Lately, Explainable black-box ML models have attracted more study interest because
they allow users to trust the created ML models by helping them to comprehend the ML
models’ involved mechanism. SHAP is a method for explaining “black-box” ML models.
Lundberg and Lee [36] were the first to suggest SHAP, which is based on the notion of
Shapley game theory. The SHAP seeks to assess the contribution of each input variable or
feature to the observation, and it can determine whether the contribution of each feature is
positive or negative. To help with the global and local explanation of ML models, SHAP
can calculate the contribution from each feature for every observation. SHAP creates a
model of explanation that can be written as:

g(z′) = φ0 +
K

∑
j=1

φjz′j (14)

where z′ ∈ {0, 1}K and K represent the number of input features; φj ∈ R is the SHAP value
for the j–th feature; φ0 is the constant if all inputs are missing.

The SHAP value for the j–th feature can be calculated as:

φj = ∑S⊆F\{i}
|S|!(|F| − |S| − 1)!

|F|!

[
fS∪{i}

(
xS∪{i} − fS(xS)

)]
(15)

where F is the set of all features and xS is the value of the input.

2.9. Programming Languages and Softwares

In this research, the Python programming language combined with the Scikit-learn
library was used to build the system for the estimation of the shear capacity and the inter-
pretation of the GBRT model. Python is a high-level, easy-to-learn, open-source, extensible,
and object-oriented programming language (OOP). Python is also an interpreted and ver-
satile language widely used in many fields, such as for building independent programs
using graphical interfaces and web applications. In addition, it can be used as a scripting
language to control the performance of many programs. It is often recommended for begin-
ners in programming to learn this language because it is among the fastest programming
languages to learn [49].
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On the other hand, Scikit-learn [48] is an ML library in Python. It contains many
algorithms and methods used in the field of ML, such as classification, clustering, and
regression, in addition to being used in the stages of data processing and model evaluation.
It was built based on the libraries of Scipy, Numpy, Matplotlib, and many others. This
study implemented the data preprocessing, filtering techniques, and GBRT modeling using
the Python programming language and the Scikit-learn library. At the same time, the plots
and figures were created using OriginLab software.

3. Model Results
3.1. K-Fold Cross-Validation

Before running the model, there is the need to fine-tune several of GBRT’s hyperpa-
rameters. The hyperparameters of the GBRT model were optimized using a grid search
process and a five-fold cross-validation. The most critical hyperparameters for the GBRT
model are the n estimators and the learning rate, representing the number of the model’s
weak learners and the weights assigned to each estimator, respectively. Additionally, the
GBRT model prediction performance can be considerably affected by its max depth pa-
rameter, which indicates the complexity of each tree, and its subsample parameter, which
represents the fraction of samples to be used for fitting the individual base learners [50].
The tuned values for each of the four hyperparameters are shown in Table 2. The coefficient
of determination (R2) was closely examined as a statistical error to obtain hyperparameters
with the maximum accuracy while minimizing over-fitting. To execute GBRT modeling
and tuning, the Scikit-learn program [48] was used.

Table 2. Hyperparameters for the GBRT model.

Hyperparameter n Estimators Learning Rate Max Depth Subsample

Values 1500 0.01 8 0.2

A total of 264 data records was used to train the GBRT model, and 66 samples were
used to test it. The five-fold cross validation results are shown in Figure 5. Again, there is
no noticeable fluctuation in the results of the five folds, and the overall accuracy remains
excellent. For example, Fold 1 has a minimum R2 value of 0.9580, and Fold 2 has a maximum
R2 value of 0.9852. Table 3 provides the full statistical breakdown of the folds’ results. The
coefficient of variation (COV) is only 1.1246% based on the average R2 of 0.9692 and the
standard deviation (SD) of 0.0109.
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Table 3. Cross-validation measurement results.

Statistics
Folds

1 2 3 4 5 SD Average COV%

R2 0.9594 0.9853 0.9644 0.9790 0.9692 0.0109 0.9692 1.1246

3.2. GBRT Performance on Testing Set

The prediction performance of the proposed method can be tested after the hyperpa-
rameters have been identified. The prediction findings are shown in Figure 6, with the X
and Y axes representing the experimental and predicted shear strengths, respectively. The
training and testing outcomes are represented by the blue dot and red triangle, respectively.
In most cases, the difference between the predicted and actual shear strength is within
a margin of error of 20% or less. There were three further iterations of the experiment,
each using a different mix of training and testing datasets. The predictions for all four
experiments are reported in Table 4. The testing RMSE and MAE were always less than
30 and 17, respectively. The mean absolute percentage error, or MAPE, was less than 14%.
That is to say, for every sample and instance, the deviation between the predicted and
actual shear strength was less than 17 kN (equivalently 14%). These results show that the
GBRT approach can be considered an effective tool for estimating the shear capacity of
SFRC beams.
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Table 4. Testing results of four repeated experiments.

Experiment RMSE (kN) MAE MAPE R2

Case 1 29.561 16.444 0.1369 0.943
Case 2 19.276 9.410 0.065 0.977
Case 3 15.44 8.313 0.057 0.990
Case 4 25.49 12.56 0.067 0.978

Figure 7 presents the histogram of the predicted shear strength (Vpred) from the GBRT
model compared to the actual shear strength (Vact) (case 1). Again, most of the shear
strengths predicted by GBRT are within a margin of 20% or less of error. The standard
deviation (σM) and mean value (µM) of the ratio Vact/Vpred are taken into consideration
when evaluating the accuracy of the GBRT model. The standard deviations (σM) for the
training and testing data were 0.058 and 0.145, respectively, whereas the mean values (µM)
were 1.002 and 0.980, respectively. A normally distributed relationship between the GBRT-
predicted values and the experimental data shows that the error is dispersed randomly.
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3.3. The Reliability of the GBRT Model Prediction

For a total of 330 SFRC beams, the statistical evaluation of the various models [1,21,26,51–53]
used to estimate the shear strength, and also for the model developed in the present study,
can be found in Table 5. The formulas from the models used for the comparative analysis
can be found in Table 6. Ashour et al. [52] proposed two sets of equations based on a
regression model for observed data gathered from 18 high-strength SFRC beam specimens.
An essential parameter, the fiber factor (F), which accounts for the influence of steel fiber
size and shape, was incorporated into the first equation, taken from the ACI Building
Code’s shear equation. In addition, to account for the role of reinforcement and concrete in
the shear capacity, the authors incorporated the shear span to effective depth (a/d) ratio in
their equation. The second equation of Ashour et al. [52] is based on a modified version
of Zsutty’s equation [54], which includes the fiber factor. Deep beams ( a

d < 2.5) and
slender beams ( a

d ≥ 2.5) have unique formulas in the two sets of the second equation. A
modified version of the ACI Building Code equation was also established for the shear
capacity by Khuntia et al. [1]. In their equation, the effect of fiber is incorporated. Khuntia
et al. [1] used the post-cracking tensile properties of fiber reinforced concrete to build the
equation. The experimental data of 68 SFRC beam specimens were used to validate the
equation. An equation presented by Sharma [51] omits some of the essential parameters,
such as the ratio lf/df and F, which substantially impact the shear capacity of SFRC. The
referred author used 41 experiments to validate his equation. Rather than incorporating
the actual reinforcement ratio, the equation from Greenough and Nehdi [21] simplifies
a formula derived from genetic programming by using a percentage for ρ. Additionally,
208 SFRC beam test results from earlier research were analyzed using multi-expression
programming to obtain the formula presented by Sarveghadi et al. [26]. The authors have
produced two sets of equations: one set contains expressions specific to high-strength
concrete, and the other set is a composite equation for both types of concrete (normal- and
high-strength). An equation for predicting the shear strength of SFRC beams based on
293 previous experiments was recently published by Sabetifar and Nematzadeh [53]. The
previous two studies [26,53] built their models based on genetic programming (GP). GP is
a machine learning-based approach for developing nonlinear regression. The Darwinian
ideas of natural selection and genetic spreading of features chosen by biologically growing
organisms are the foundations of GP. Even though both researches [26,53] were published
recently, the datasets utilized to train and test the models were quite constrained, resulting
in models with only limited application. The equations for the shear capacity of SFRC
beams proposed in the previous referred studies are given in Table 6.
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Table 5. Statistical measures of the proposed equations.

Model µM STD COV Min Max

Sarveghadi et al. [26] 0.991 0.26 27% 0.22 1.92
Greenough and Nehdi [21] 1.20 0.37 30% 0.31 3.11

Khuntia et al. [1] 1.48 0.45 31% 0.18 4.03
Sharma [51] 1.11 0.33 30% 0.18 2.28

Sabetifar and Nematzadeh [53] 0.968 0.22 22% 0.33 1.83
Ashour et al. [52] 1.15 0.40 35% 0.24 3.14
Ashour et al. [52] 1.35 0.35 26% 0.47 3.22
Proposed GBRT 0.996 0.08 12% 0.64 1.26

Table 6. Previous equations for the shear capacity of SFRC beams.

Reference Author Equation

[26] Sarveghadi et al.
Vu =

[
ρ +

ρ
vb

+ 1
a
d

(
ρ f ′t (ρ+2)

(
f ′t

a
d−

3
vb

)
a
d

+ f ′t

)
+ vb

]
bwd

f ′t = 0.79
√

f ′c
vb = 0.41τF with τ = 4.15MPa

[21] Greenough and Nehdi Vu =

[
0.35

(
1 +

√
400
d

)
( f ′c)

0.18
(
(1 + F)ρ d

a

)0.4
+ 0.9ηoτF

]
bwd

[1] Khuntia et al. Vu =
[
(0.167 + 0.25F)

√
fc ′
]
bwd

[51] Sharma Vu =

(
2
3 × 0.8

√
f ′c
(

d
a

)0.25
)

bwd

[52] Ashour et al.

Vu =
[(

0.7
√

fc ′ + 7F
) d

a + 17.2ρ d
a

]
bwd

Vu =

[(
2.11 3

√
fc ′ + 7F

)(
ρ d

a

)0.333
]

bwd for a
d ≥ 2.5

Vu =

[((
2.11 3

√
fc ′ + 7F

)(
ρ d

a

)0.333
)

2.5
π
d
+ vb

(
2.5− a

d
)]

bwd for a
d < 2.5

[53] Sabetifar and
Nematzadeh Vu =

[
F + 2ρ +

√
ρ f ′c(F+3.58)2

(a/d) − ρ2( f ′c + 8.52) + F(F− 0.73)
(
ρρ −

√
a/d

)]
bwd

where: f ′c and f ′t are the compressive and tensile strengths of concrete, respectively; F is the fiber factor; ηo is the
fiber orientation factor, τ is the average fiber–matrix interfacial bond stress.

The mean value for the ratio of the experimental values to the model predicted
values (µM) and their variability (CV) was used to evaluate the performance of the model.
The prediction is more accurate when µM is near to 1 and when the CV is low. As can
be observed in Table 5, five of the µM values are higher than 1.00, implying that the
models from [1,21,51,52] underestimate the shear capacity of SFRC beams, while the models
from [26,53] slightly overestimate the shear resistance. The explanation for this observation
might be linked to the fact that the previously referred equations were produced based on
a limited set of data with low variation between specimens’ properties. Furthermore, the
equations proposed in the referred literature omit some critical factors that contribute to
the shear strength of SFRC.

With µM = 0.996, STD = 0.08, and COV = 12%, it can be stated that the proposed model
in this research beat all previous models. As a result, the model has a reduced error rate
and a higher degree of linearity between the anticipated and actual values. Furthermore,
the GBRT model has the lowest coefficient of variation (COV) when compared to the other
models, indicating that its projected values have the slightest variance around the mean.

The experimental to prediction ratios for each input variable are presented in Figure 8,
in order to check if a bias exists between the prediction of the GBRT model and one or more
input variables. From Figure 8, it seems that a significant trend or preference toward these
variables does not exist. The accuracy of the GBRT prediction for the shear strength seems
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robust. This indicates that the proposed model can be employed with high confidence
within the ranges of independent variables used to construct the model.
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Figure 8. The relationship between the shear input variables and the ratio of experimental to model
shear strength.

3.4. Interpretation of the GBRT Model

The SHAP approach was used to understand the developed GBRT model and how its
inputs impact its outputs. The summary of the SHAP values and the feature importance
factor for all of the input features can be seen in Figure 9. Each dot on the graphs represents
a dataset instance and its corresponding feature SHAP value. The x-axis indicates each
feature’s effectiveness on the dependent variable, while the y-axis shows the model’s
ranking of features by significance. A red dot denotes a high feature value, corresponding
to a higher SHAP value. The significance of each feature is determined as the mean absolute
SHAP values for the whole dataset, as shown in Figure 9a.

Figure 9a shows that both the beam width (bw) and the effective depth (d) are the most
important factors, followed by the concrete strength (fc) and the longitudinal reinforcement
ratio (ρ). In addition, the outputs are also affected by the steel fiber factor (Fsf) and the
shear-span to effective depth ratio (a/d). Finally, the fiber tensile strength (ft) and the
aggregate size (da) have the lowest effect. According to the results in Figure 9a, bw and d
have the ability to alter the estimated value of shear strength by an average of 16%, while ft
and da have the lowest ability with only about 1%. As can be seen in Figure 9b, most of the
features mentioned above positively influence the model outcome, which indicates that
when one of those features increases, the shear capacity of the SFRC slender beam increases.
The only exception among those features is a/d. This observation can be explained due to
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the influence of the arch action, which depicts the compressive force created along with the
beam supports and the loading points. Loads are borne in part by the arch action in the
area of small shear spans. The applied shear is resisted by the arch action, which leads to a
decreased shear for higher a/d [55]. The conclusions presented in this section can assist
constructers and designers in determining the importance of each feature in SFRC slender
beams for the output shear strength, and whether it is positive or negative.
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4. Conclusions

An investigation on the use of an explainable ML method for the prediction of the
shear strength of SFRC slender beams was conducted in this study. Using SHAP to interpret
the ML model, the factors impacting the shear strength were examined. A database with
330 SFRC slender beam tests was created and randomly divided into testing and training
sets. Using a five-fold cross-validation procedure paired with a grid search strategy, optimal
hyperparameters of the GBRT model were found based on the training dataset. The testing
dataset was used to validate the performance of the built GBRT model. Meanwhile, six
empirical and machine learning-based equation models were chosen and compared to
comprehensively analyze the performance of the GBRT model. Additionally, to analyze the
GBRT model globally across the whole dataset, the SHAP approach was used. The SHAP
values were used to discuss factors that impact the model results. The following are the
main key conclusions that can be derived from the research findings:

• The GBRT model predicts the shear capacity of SFRC slender beams with high accuracy.
The model has R2 values of 0.963 and 0.972 for the testing and training sets, respectively.
In addition, both the training and testing sets of the GBRT model have low RMSE
and MAE values, indicating that the prediction capability of the GBRT model can be
trusted with high confidence;

• A comparison between the predicted and experimental shear strengths was also
performed, using previously established equations from the literature. The results
show that the predicted values from previous models do not apply to a wide range of
data and have a high variance;

• Most of the proposed equations from the literature show a mean value for the model
uncertainty larger than 1, implying that they all underestimate the shear capacity of
the SFRC slender beams from the database;

• With low error measurements and µM near unity, the results showed that the GBRT
method surpassed the other models mentioned in this study.
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Appendix A

S.No bw (mm) d (mm) ρ a/d da (mm) fc (MPa) ft (MPa) Fst Vu (kN)

1 150 251 0.0267 3.49 12.5 28.1 1100 0.49 113
2 150 251 0.0267 3.49 12.5 25.3 1100 0.49 79
3 150 251 0.0267 3.49 12.5 27.9 1100 0.65 109
4 150 251 0.0267 3.49 12.5 26.2 1100 0.65 123
5 150 251 0.0267 3.49 12.5 28.1 1100 0.98 111
6 150 251 0.0267 3.49 12.5 27.3 1100 0.98 131
7 150 251 0.0267 3.49 12.5 27.5 1050 0.40 65
8 150 251 0.0267 3.49 12.5 24.9 1050 0.40 77
9 150 251 0.0267 3.49 12.5 27.8 1050 0.60 91

10 150 251 0.0267 3.49 12.5 27.3 1050 0.60 102
11 150 251 0.0267 3.49 12.5 26.3 1050 0.80 116
12 150 251 0.0267 3.49 12.5 27.1 1050 0.80 105
13 150 251 0.0267 3.49 12.5 53.4 1100 0.49 113
14 150 251 0.0267 3.49 12.5 54.1 1100 0.49 126
15 150 251 0.0267 3.49 12.5 53.2 1100 0.65 144
16 150 251 0.0267 3.49 12.5 55.3 1100 0.65 166
17 150 251 0.0267 3.49 12.5 64.6 1100 0.98 195
18 150 251 0.0267 3.49 12.5 59.9 1100 0.98 160
19 150 251 0.0267 3.49 12.5 47.8 1050 0.40 128
20 150 251 0.0267 3.49 12.5 49.5 1050 0.40 152
21 150 251 0.0267 3.49 12.5 55.3 1050 0.60 146
22 150 251 0.0267 3.49 12.5 56.4 1050 0.60 178
23 150 251 0.0267 3.49 12.5 53.4 1050 0.80 128
24 150 251 0.0267 3.49 12.5 51.0 1050 0.80 157
25 150 251 0.0267 3.49 12.5 27.8 1025 0.38 79
26 150 251 0.0267 3.49 12.5 27.2 1025 0.38 78
27 150 251 0.0267 3.49 12.5 27.6 1050 0.64 99
28 150 251 0.0267 3.49 12.5 27.9 1050 0.64 81
29 150 251 0.0267 3.49 12.5 34.7 1025 0.38 99
30 150 251 0.0267 3.49 12.5 36.2 1025 0.38 100
31 150 251 0.0267 3.49 12.5 37.0 1050 0.64 110
32 150 251 0.0267 3.49 12.5 38.3 1050 0.64 104
33 150 261 0.0195 3.45 20.0 32.9 1100 0.60 108
34 150 261 0.0195 3.45 20.0 23.8 1100 0.80 93
35 150 261 0.0195 3.45 20.0 24.1 1100 1.00 114
36 140 175 0.0128 2.50 12.0 82.0 1100 0.40 63
37 140 175 0.0128 2.50 12.0 83.2 1100 0.80 79
38 140 175 0.0128 2.50 12.0 83.8 1100 1.20 135
39 150 200 0.0134 2.50 22.0 33.7 1100 0.55 65
40 150 200 0.0134 2.50 22.0 24.5 1100 0.55 44
41 150 200 0.0134 2.50 22.0 21.4 1100 1.09 50
42 150 200 0.0134 2.50 12.0 9.8 1100 1.64 39
43 150 200 0.0134 3.50 22.0 20.2 1100 0.55 33
44 150 200 0.0134 3.50 22.0 21.4 1100 1.09 43
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S.No bw (mm) d (mm) ρ a/d da (mm) fc (MPa) ft (MPa) Fst Vu (kN)

45 150 200 0.0134 3.50 12.0 27.9 1100 1.64 59
46 150 200 0.0134 4.50 22.0 24.5 1100 0.55 43
47 152 381 0.0271 3.40 10.0 49.2 1100 0.80 172
48 152 381 0.0271 3.40 10.0 31.0 1100 0.90 148
49 152 381 0.0271 3.40 10.0 44.9 1100 0.90 189
50 152 381 0.0271 3.40 10.0 44.9 1100 0.90 190
51 152 381 0.0271 3.40 10.0 49.2 1100 0.80 218
52 152 381 0.0271 3.40 10.0 31.0 1100 0.90 195
53 152 381 0.0271 3.50 10.0 38.1 1100 0.60 147
54 152 381 0.0271 3.50 10.0 38.1 1100 0.60 200
55 152 381 0.0197 3.50 10.0 38.1 1100 0.60 175
56 152 381 0.0197 3.50 10.0 38.1 1100 0.60 179
57 200 260 0.0181 2.50 10.0 40.0 1100 0.17 108
58 200 260 0.0181 2.50 10.0 38.7 1100 0.51 144
59 200 260 0.0115 2.50 10.0 40.0 1100 0.17 82
60 200 260 0.0115 2.50 10.0 38.7 1100 0.51 107
61 200 460 0.0280 3.40 10.0 37.7 1100 0.34 244
62 200 460 0.0280 3.40 10.0 38.8 1100 0.34 252
63 200 460 0.0280 3.40 10.0 37.7 1100 0.34 259
64 200 460 0.0280 3.40 10.0 37.7 1100 0.34 263
65 200 260 0.0356 3.50 10.0 46.9 1100 0.17 110
66 200 260 0.0356 3.50 10.0 43.7 1100 0.34 120
67 200 260 0.0356 3.50 10.0 48.3 1100 0.51 155
68 200 260 0.0283 3.50 10.0 37.7 1100 0.34 111
69 200 260 0.0283 3.50 10.0 38.8 1100 0.34 132
70 200 540 0.0273 3.50 10.0 37.7 1100 0.17 153
71 200 560 0.0273 3.50 10.0 38.8 1100 0.34 230
72 200 260 0.0181 4.00 10.0 41.2 1100 0.17 82
73 200 260 0.0181 4.00 10.0 40.3 1100 0.51 117
74 150 217 0.0185 2.95 10.0 35.0 1100 0.60 84
75 300 622 0.0198 2.81 10.0 34.0 2300 0.21 274
76 300 622 0.0198 2.81 10.0 36.0 2300 0.45 344
77 85 130 0.0205 2.52 9.6 51.9 2000 0.19 30
78 85 130 0.0205 3.02 9.6 51.9 2000 0.19 31
79 85 130 0.0205 2.52 9.6 33.3 2000 0.19 23
80 85 130 0.0205 3.02 9.6 33.3 2000 0.19 21
81 85 130 0.0205 3.02 9.6 51.7 2000 0.50 36
82 85 130 0.0205 3.02 9.6 30.6 2000 0.50 22
83 85 130 0.0205 3.02 9.6 31.0 2000 0.75 33
84 85 130 0.0205 2.52 9.6 51.7 2000 0.50 41
85 85 130 0.0205 3.52 9.6 41.7 2000 0.50 29
86 85 130 0.0205 2.52 9.6 48.7 2000 1.00 49
87 85 130 0.0205 3.52 9.6 48.8 2000 1.00 33
88 85 128 0.0370 3.06 9.6 41.7 2000 0.50 32
89 85 126 0.0572 3.11 9.6 41.7 2000 0.50 38
90 85 128 0.0370 3.06 9.6 30.6 2000 0.50 24
91 85 126 0.0572 3.11 9.6 30.6 2000 0.50 25
92 85 128 0.0370 3.06 9.6 48.8 2000 1.00 48
93 85 126 0.0572 3.11 9.6 48.8 2000 1.00 54
94 85 126 0.0572 3.11 9.6 53.6 2000 1.13 52
95 85 126 0.0572 3.11 9.6 43.2 2000 1.50 53
96 85 128 0.0370 3.06 9.6 53.6 2000 1.13 49
97 150 219 0.0191 2.80 10.0 40.9 1115 0.60 96
98 150 219 0.0191 2.80 10.0 40.9 1115 1.20 103
99 125 212 0.0152 3.00 19.0 30.8 1079 0.31 68

100 100 130 0.0309 3.08 10.0 38.7 1303 0.30 58
101 100 130 0.0309 3.08 10.0 42.4 1303 0.60 74
102 152 381 0.0196 3.44 10.0 44.8 1100 0.41 171
103 152 381 0.0196 3.44 10.0 44.8 1100 0.41 160
104 152 381 0.0196 3.44 10.0 38.1 1100 0.55 169
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S.No bw (mm) d (mm) ρ a/d da (mm) fc (MPa) ft (MPa) Fst Vu (kN)

105 152 381 0.0196 3.44 10.0 38.1 1100 0.55 172
106 152 381 0.0263 3.44 10.0 31.0 1100 0.83 148
107 152 381 0.0263 3.44 10.0 31.0 1100 0.83 196
108 152 381 0.0263 3.44 10.0 44.9 1100 0.83 191
109 152 381 0.0263 3.44 10.0 44.9 1100 0.83 189
110 152 381 0.0263 3.44 10.0 49.2 1100 0.80 172
111 152 381 0.0263 3.44 10.0 49.2 1100 0.80 218
112 152 381 0.0196 3.44 10.0 43.3 2300 0.60 193
113 152 381 0.0196 3.44 10.0 43.3 2300 0.60 189
114 205 610 0.0196 3.50 10.0 50.8 1100 0.41 363
115 205 610 0.0196 3.50 10.0 50.8 1100 0.41 335
116 205 610 0.0196 3.50 10.0 28.7 1100 0.60 349
117 205 610 0.0196 3.50 10.0 28.7 1100 0.60 341
118 205 610 0.0152 3.50 10.0 42.3 1100 0.41 345
119 205 610 0.0152 3.50 10.0 29.6 1100 0.60 265
120 205 610 0.0152 3.50 10.0 29.6 1100 0.60 222
121 205 610 0.0196 3.50 10.0 44.4 1100 0.83 432
122 205 610 0.0196 3.50 10.0 42.8 1100 1.20 418
123 150 340 0.0308 2.50 12.5 58.9 1150 0.65 260
124 150 340 0.0308 2.50 12.5 51.7 1150 1.30 291
125 150 735 0.0106 3.81 12.5 42.0 1200 0.94 352
126 150 735 0.0106 3.81 12.5 38.0 1200 0.75 352
127 125 225 0.0349 2.89 10.0 90.0 1200 0.75 157
128 150 202 0.0117 2.97 10.0 21.3 1100 0.28 48
129 150 202 0.0117 2.97 10.0 19.6 1100 0.55 57
130 300 437 0.0150 3.09 10.0 21.3 1100 0.28 154
131 300 437 0.0150 3.09 10.0 19.6 1100 0.55 198
132 200 435 0.0104 2.51 20.0 24.8 1100 0.19 129
133 200 435 0.0104 2.51 20.0 33.5 1100 0.19 115
134 200 435 0.0104 2.51 20.0 33.5 1333 0.33 137
135 200 435 0.0104 2.51 20.0 38.6 1100 0.19 136
136 200 455 0.0099 2.51 15.0 24.4 1100 0.13 154
137 200 910 0.0104 2.50 20.0 24.4 1100 0.13 247
138 200 910 0.0104 2.50 20.0 55.0 1100 0.13 328
139 125 210 0.0153 4.00 19.0 44.6 1100 0.31 35
140 125 225 0.0349 2.89 10.0 90.0 1200 0.75 138
141 125 225 0.0349 2.89 10.0 90.0 1200 0.75 138
142 152 221 0.0120 2.50 10.0 34.0 1130 0.30 58
143 152 221 0.0239 2.50 10.0 34.0 1130 0.60 83
144 152 221 0.0239 2.50 10.0 34.0 1130 0.30 64
145 152 221 0.0239 3.50 10.0 34.0 1130 0.30 49
146 150 197 0.0136 2.80 20.0 29.1 1260 0.30 53
147 150 197 0.0136 3.60 20.0 29.1 1260 0.30 45
148 150 197 0.0136 2.80 20.0 29.9 1260 0.45 60
149 150 197 0.0204 2.80 20.0 29.9 1260 0.45 65
150 150 197 0.0136 2.80 20.0 20.6 1260 0.45 45
151 150 197 0.0204 2.80 20.0 20.6 1260 0.45 60
152 150 197 0.0204 2.80 20.0 33.4 1260 0.45 86
153 152 254 0.0248 3.50 10.0 29.0 1096 0.50 120
154 610 254 0.0247 3.50 10.0 29.0 1096 0.50 478
155 152 394 0.0286 3.61 10.0 39.0 1096 0.50 161
156 152 394 0.0286 3.61 10.0 39.0 1096 0.50 194
157 203 541 0.0254 3.45 10.0 50.0 1096 0.50 267
158 203 541 0.0254 3.45 10.0 50.0 1096 0.50 380
159 254 813 0.0270 3.50 10.0 50.0 1096 0.50 683
160 254 813 0.0270 3.50 10.0 50.0 1096 0.50 704
161 305 1118 0.0255 3.50 10.0 50.0 1096 0.50 1045
162 305 1118 0.0255 3.50 10.0 50.0 1096 0.50 1008
163 200 180 0.0447 3.33 16.0 90.6 2600 0.20 299
164 200 180 0.0447 3.33 16.0 83.2 1850 0.36 295
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S.No bw (mm) d (mm) ρ a/d da (mm) fc (MPa) ft (MPa) Fst Vu (kN)

165 200 180 0.0447 3.33 16.0 80.5 2200 0.43 252
166 200 180 0.0447 3.33 16.0 80.5 2200 0.64 262
167 200 195 0.0309 3.08 16.0 39.4 1850 0.36 189
168 200 235 0.0428 2.77 16.0 91.4 1100 0.50 310
169 200 235 0.0428 2.77 16.0 93.3 2600 0.20 363
170 200 235 0.0428 2.77 16.0 89.6 1850 0.36 407
171 200 410 0.0306 2.93 18.0 76.8 2600 0.20 289
172 200 410 0.0306 2.93 18.0 76.8 2600 0.20 336
173 200 410 0.0306 2.93 18.0 72.0 1850 0.36 367
174 200 410 0.0306 2.93 18.0 72.0 1850 0.36 327
175 200 410 0.0306 2.93 18.0 69.3 2200 0.43 264
176 200 410 0.0306 2.93 18.0 69.3 2200 0.43 312
177 200 410 0.0306 2.93 18.0 60.2 2200 0.64 339
178 200 410 0.0306 2.93 18.0 75.7 2200 0.64 292
179 300 570 0.0287 2.98 18.0 76.8 2600 0.20 445
180 300 570 0.0287 2.98 18.0 72.0 1850 0.36 596
181 300 570 0.0287 2.98 18.0 60.2 2200 0.64 509
182 200 314 0.0350 3.50 0.4 131.5 2000 0.75 251
183 200 314 0.0350 3.50 0.4 154.5 2000 0.75 318
184 200 314 0.0350 3.50 0.4 145.6 2000 0.75 357
185 200 314 0.0350 3.50 0.4 132.8 2000 0.38 266
186 200 314 0.0350 3.50 0.4 143.3 2000 0.38 199
187 200 314 0.0350 3.50 0.4 152.9 2000 0.38 308
188 125 215 0.0037 4.00 10.0 92.6 260 0.75 24
189 125 215 0.0037 6.00 10.0 93.7 260 0.75 15
190 125 215 0.0283 4.00 10.0 95.4 260 0.38 61
191 125 215 0.0283 6.00 10.0 95.8 260 0.38 52
192 125 215 0.0283 4.00 10.0 97.5 260 0.75 85
193 125 215 0.0283 6.00 10.0 100.5 260 0.75 53
194 125 215 0.0283 4.00 10.0 97.1 260 1.13 94
195 125 215 0.0283 6.00 10.0 101.3 260 1.13 53
196 125 215 0.0458 4.00 10.0 93.8 260 0.75 104
197 125 215 0.0458 6.00 10.0 95.0 260 0.75 79
198 140 340 0.0167 2.50 19.0 36.0 1100 0.60 154
199 150 350 0.0561 2.86 2.0 121.1 2000 0.52 340
200 150 350 0.0561 2.86 2.0 120.3 2000 1.04 531
201 260 340 0.0172 4.00 10.0 21.0 1336 0.45 114
202 260 340 0.0172 4.00 10.0 56.0 1336 0.45 204
203 64 102 0.0220 3.00 2.4 53.0 1000 0.21 17
204 127 204 0.0221 3.00 2.4 53.0 1000 0.21 51
205 64 102 0.0220 3.00 2.4 50.2 1000 0.43 21
206 127 204 0.0221 3.00 2.4 50.2 1000 0.43 66
207 64 102 0.0220 3.00 2.4 62.6 1000 0.21 18
208 127 204 0.0221 3.00 2.4 62.6 1000 0.21 61
209 64 102 0.0220 2.50 2.4 62.6 1000 0.21 21
210 64 102 0.0220 2.75 2.4 62.6 1000 0.21 18
211 64 102 0.0110 3.00 2.4 62.6 1000 0.21 13
212 64 102 0.0330 3.00 2.4 62.6 1000 0.21 18
213 64 102 0.0330 3.00 2.4 54.1 1000 0.43 25
214 127 204 0.0221 3.00 9.0 22.7 1172 0.60 79
215 64 102 0.0220 3.00 9.0 22.7 1172 0.60 20
216 64 102 0.0110 3.00 9.0 22.7 1172 0.60 16
217 127 204 0.0221 3.00 9.0 26.0 1172 1.00 79
218 64 102 0.0220 3.00 9.0 26.0 1172 1.00 23
219 55 265 0.0431 3.43 14.0 41.9 1570 0.75 59
220 55 265 0.0431 4.91 14.0 36.9 1570 0.75 43
221 55 265 0.0276 3.43 14.0 33.9 1570 0.75 46
222 200 265 0.0178 3.02 10.0 47.9 1100 0.25 91
223 200 265 0.0178 3.02 10.0 38.0 1100 0.38 106
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S.No bw (mm) d (mm) ρ a/d da (mm) fc (MPa) ft (MPa) Fst Vu (kN)

224 200 265 0.0178 3.02 10.0 42.2 1100 0.50 149
225 200 265 0.0178 3.02 10.0 45.4 1100 0.13 115
226 200 265 0.0178 3.02 10.0 44.4 1100 0.19 144
227 200 265 0.0178 3.02 10.0 40.3 1100 0.25 147
228 200 265 0.0178 3.02 10.0 53.7 1100 0.11 107
229 200 265 0.0178 3.02 10.0 46.0 1100 0.16 123
230 200 265 0.0178 3.02 10.0 42.2 1100 0.21 151
231 200 310 0.0113 2.55 9.5 39.8 1100 0.30 131
232 200 285 0.0333 2.77 9.5 39.8 1100 0.30 220
233 200 260 0.0355 3.46 14.0 46.4 1100 0.16 110
234 200 260 0.0355 3.46 14.0 43.2 1100 0.33 120
235 200 260 0.0355 3.46 14.0 47.6 1100 0.49 155
236 200 260 0.0181 2.50 14.0 39.1 1100 0.16 108
237 200 260 0.0181 2.50 14.0 38.6 1100 0.49 144
238 200 260 0.0181 4.04 14.0 40.7 1100 0.16 83
239 200 260 0.0181 4.04 14.0 42.4 1100 0.49 117
240 200 260 0.0181 2.50 14.0 26.5 1100 0.11 100
241 200 260 0.0181 2.50 14.0 27.2 1100 0.34 120
242 200 260 0.0181 2.50 14.0 46.8 1100 0.33 158
243 175 210 0.0401 4.50 10.0 36.4 1050 0.30 80
244 175 210 0.0401 4.50 10.0 38.4 1050 0.60 114
245 175 210 0.0401 4.50 10.0 40.8 1050 0.90 115
246 175 210 0.0401 4.50 10.0 38.5 1050 0.60 69
247 101 127 0.0309 4.40 2.0 33.2 1100 0.11 32
248 101 127 0.0309 4.20 2.0 33.2 1100 0.11 31
249 101 127 0.0309 4.20 2.0 33.2 1100 0.11 28
250 101 127 0.0309 4.20 2.0 33.2 1100 0.11 25
251 101 127 0.0309 4.30 2.0 33.2 1100 0.11 30
252 101 127 0.0309 4.30 2.0 33.2 1100 0.11 28
253 101 127 0.0309 4.00 2.0 40.2 1100 0.22 33
254 101 127 0.0309 4.00 2.0 40.2 1100 0.22 31
255 101 127 0.0309 4.00 2.0 40.2 1100 0.22 33
256 101 127 0.0309 4.40 2.0 33.2 1100 0.11 28
257 101 127 0.0309 4.40 2.0 33.2 1100 0.11 27
258 101 127 0.0309 4.00 2.0 33.2 1100 0.10 30
259 101 127 0.0309 4.00 2.0 33.2 1100 0.10 30
260 101 127 0.0309 4.00 2.0 33.2 1100 0.10 33
261 101 127 0.0309 4.60 2.0 33.2 1100 0.10 26
262 101 127 0.0309 4.40 2.0 33.2 1100 0.10 27
263 101 127 0.0309 4.40 2.0 33.2 1100 0.10 26
264 101 127 0.0309 5.00 2.0 33.2 1100 0.10 24
265 101 127 0.0309 4.80 2.0 33.2 1100 0.10 22
266 101 127 0.0309 4.00 2.0 40.2 1100 0.20 31
267 101 127 0.0309 4.20 2.0 40.2 1100 0.20 34
268 101 127 0.0309 4.20 2.0 40.2 1100 0.20 30
269 101 127 0.0309 4.20 2.0 40.2 1100 0.20 32
270 101 127 0.0309 3.20 2.0 39.7 1100 0.41 37
271 101 127 0.0309 3.40 2.0 39.7 1100 0.41 34
272 101 127 0.0309 3.40 2.0 39.7 1100 0.41 33
273 101 127 0.0309 3.40 2.0 39.7 1100 0.41 42
274 101 127 0.0309 3.40 2.0 39.7 1100 0.41 39
275 101 127 0.0309 4.80 2.0 33.2 1100 0.10 24
276 101 127 0.0309 4.80 2.0 33.2 1100 0.10 23
277 101 127 0.0309 4.80 2.0 33.2 1100 0.10 26
278 100 127 0.0199 3.60 2.0 20.7 4913 0.13 21
279 100 127 0.0199 3.60 2.0 20.7 2350 0.42 29
280 100 127 0.0199 4.80 2.0 20.7 2350 0.42 24
281 100 175 0.0359 3.00 13.0 80.0 1856 0.25 56
282 100 175 0.0359 3.00 13.0 80.0 1856 0.50 72
283 100 175 0.0359 4.50 13.0 80.0 1856 0.25 49
284 100 175 0.0359 4.50 13.0 80.0 1856 0.50 60
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S.No bw (mm) d (mm) ρ a/d da (mm) fc (MPa) ft (MPa) Fst Vu (kN)

285 200 300 0.0308 2.50 10.0 110.0 2000 0.56 284
286 200 300 0.0308 3.50 10.0 111.5 2000 0.56 209
287 200 300 0.0308 4.50 10.0 110.8 2000 0.56 212
288 152 283 0.0199 2.50 9.5 33.1 1100 1.00 136
289 152.4 283 0.0199 2.50 9.5 33.2 1100 1.00 145
290 152 283 0.0199 2.50 9.5 33.0 1100 2.00 134
291 152 283 0.0199 2.50 9.5 34.4 1100 2.00 138
292 100 166 0.0343 3.02 10.0 39.4 1200 0.30 31
293 100 166 0.0343 3.02 10.0 39.2 1200 0.60 52
294 100 166 0.0343 3.02 10.0 40.0 1200 0.90 54
295 100 166 0.0343 3.02 10.0 35.5 1200 1.20 48
296 100 159 0.0478 3.14 10.0 58.0 1200 0.60 74
297 100 159 0.0478 3.14 10.0 80.1 1200 0.30 73
298 100 159 0.0478 3.14 10.0 88.0 1200 0.60 81
299 150 219 0.0191 2.80 10.0 80.0 1100 0.55 114
300 125 212 0.0152 3.77 10.0 59.4 1100 0.27 43
301 125 212 0.0152 3.77 10.0 49.6 1100 0.40 45
302 125 210 0.0228 3.81 10.0 49.7 1100 0.41 44
303 125 210 0.0228 3.81 10.0 51.5 1100 0.55 58
304 125 210 0.0228 3.81 12.0 54.5 1100 0.55 59
305 100 140 0.0112 2.50 12.5 36.1 1100 0.31 41
306 100 85 0.0166 3.52 10.0 54.8 1100 0.95 20
307 100 85 0.0166 3.52 10.0 49.3 1100 1.43 22
308 100 85 0.0166 3.52 10.0 49.3 1100 1.43 19
309 100 85 0.0166 3.52 10.0 53.7 1100 2.86 20
310 100 85 0.0166 3.52 10.0 53.5 1100 0.71 23
311 100 85 0.0166 3.52 10.0 53.5 1100 0.71 18
312 200 273 0.0348 2.75 22.0 110.9 1000 0.48 201
313 200 273 0.0348 2.75 22.0 109.2 1000 0.50 209
314 80 165 0.0171 2.99 4.0 41.2 800 0.50 33
315 80 165 0.0171 2.99 4.0 39.9 800 0.75 41
316 300 420 0.0322 3.21 20.0 62.3 1400 0.49 411
317 450 648 0.0327 3.26 20.0 62.3 1400 0.49 793
318 600 887 0.0343 3.26 20.0 62.3 1400 0.49 1430
319 70 270 0.0332 2.56 10.0 50.0 1100 0.33 81
320 110 270 0.0212 2.56 10.0 50.0 1100 0.33 96
321 150 270 0.0155 2.56 10.0 50.0 1100 0.33 109
322 310 258 0.0250 3.00 10.0 23.0 1100 0.55 210
323 310 240 0.0403 3.00 10.0 41.0 1100 0.55 280
324 300 531 0.0188 3.00 10.0 23.0 1100 0.55 248
325 300 523 0.0255 3.00 10.0 23.0 1100 0.55 238
326 300 523 0.0255 3.00 10.0 41.0 1100 0.55 440
327 300 923 0.0144 3.00 10.0 41.0 1100 0.55 479
328 300 920 0.0203 3.00 10.0 41.0 1100 0.55 484
329 300 923 0.0144 3.00 10.0 80.0 1100 0.55 633
330 300 920 0.0203 3.00 10.0 80.0 1100 0.55 631
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