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Abstract: This study thoroughly compares multiple single bidirectional and multiport converters
(MPCs), highlighting the significant role of MPCs in multi-input and multi-output (MIMO) systems.
MPCs offer a more efficient and cost-effective solution than multiple single converters, especially in
applications involving photovoltaic (PV), electric vehicles (EVs) with storage systems, and power
grids. This research emphasizes the importance of multi-input converters (MICs) in integrating
diverse voltage sources. It notes the rising popularity of multi-output DC-DC converters in portable
electronics, owing to their reduced component count, lower costs, and compact design. This paper
emphasizes comparisons based on diverse aspects and applications, shedding light on recent de-
velopments in basic bidirectional converters. Additionally, it delves into the advancements in MPC
topologies, focusing on efficiency, reliability, and modularity improvements. These advancements are
crucial for harnessing cost reduction, simplicity, and compactness. Furthermore, this paper introduces
an innovative multiport DC-DC converter tailored for integrating and managing renewable sources.
This new converter design enhances PV system and battery storage performance by reducing power
conversion steps, using fewer components, and improving voltage-boosting capabilities. Its unique
bidirectional buck-boost structure allows for versatile connections between sources and loads with
varying voltage and power requirements. The performance of this novel converter is evaluated
through MATLAB/Simulink simulations under different scenarios. Experimental studies further
validate its effectiveness, marking a significant contribution to power conversion and management in
integrating renewable sources such as DC microgrids.

Keywords: Bidirectional; DC-DC converter; multiport DC-DC converters; multi-input and multi-output
(MIMO)

1. Introduction

Bidirectional DC-DC converters (BDCs) have recently attracted much interest because
of the rising need for systems that can transfer energy in both directions between two DC
buses. Energy storage for renewable energy systems, fuel cells, hybrid electric vehicles
(HEVs), and uninterruptible power supply (UPS) are only some of the emerging applica-
tions for BDCs (UPS). A bidirectional converter is ideal as a backup in the case of a system
failure or if the energy system’s output fluctuates due to climatic conditions.

Many research efforts [1] analyze alternative topologies for constructing bidirectional
DC-to-DC converters. Due to switch losses and leakage inductance, traditional bidirectional
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converters fail to achieve high gain and efficiency [2]. Figure 1 depicts the general design
of a bidirectional DC-to-DC converter [3]. A single converter is used in a bidirectional
system for forward and backward power flow. The voltage may be stepped up or down
with the ability to flow electricity in the previously described modes, as bidirectional
converters can do. As a result, the system will be smaller and more effective thanks to the
bidirectional setups. As a result of its unique qualities, a bidirectional converter may be
used in systems where both directions of current flow are needed. The significant tasks of a
bidirectional converter are to transmit transient and overload power from batteries to loads
in a forward mode and to recharge batteries in the reverse mode. It is possible to classify
bidirectional converters according to how much galvanic isolation is provided between
the output. Bidirectional DC-to-DC converters come in the following two varieties: non-
isolated converters that do not provide isolation and isolated converters that do provide
isolation. This circumstance necessitates high-efficiency bidirectional DC-to-DC converters
with exceptionally soft switching [4–6].
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Various bidirectional DC-DC converters have been evaluated due to the increased
usage of renewable energy sources in electrical systems. When comprehending renewable
energy systems, knowing the working notion of a bidirectional converter is vital. These
converters are classified as isolated or non-isolated in Section 2. The arrangement of each
group and tables for comparisons have been supplied to aid in comprehending the infor-
mation. Section 3 highlights the derivation of bidirectional multiport from conventional
bidirectional converters. Multiport techniques are divided into major classes based on topo-
logical categorization, which are discussed in Section 4. Section 5 proposes a dual-input
single-input converter as a case study. Section 6 highlights some of the future aspects and
recommendations for upcoming researchers. Conclusions and summaries are provided in
Section 7.

2. Classification of Bidirectional DC-DC Converters

Galvanic isolation between outputs and inputs is used to classify a bidirectional
converter [7]. Non-isolated bidirectional converters, or NIBDCs for short, do not provide
magnetic isolation while transferring power. As a result of their simple design, little
magnetic interference, and high weight owing to the transformer, they are advantageous.
Because of these features, they are well-suited for applications where weight and size
are vital considerations. DC voltage is transformed into an AC waveform using a high-
frequency transformer, which is then rectified back to DC using an isolated topology.
Isolated topologies have a more considerable voltage gain than non-isolated topologies.
However, with these converters, reduced leakage inductance and transformer design
are significant considerations. The topology of these converters will be examined in the
following sub-sections. Figure 2 highlights the classification of bidirectional converters.
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2.1. Non-Isolated Bidirectional (NIB) DC-to-DC Converter

An NIBDC converter has no electrical isolation between the sources and loads. With
the addition of an antiparallel diode to the switch, you can make a non-isolated bidirectional
converter (assuming it is not already there). High-power converters like this one tend to be
avoided because of this drawback. However, these converters are now more efficient and
less expensive in low-power applications, where weight and controllability are more critical
than power [8–10]. Figure 3 represents different topologies of non-isolated bidirectional
converters, which are the buck and boost converter [11–13], cuk converter [14,15], cascaded
converter [16–21], switched-capacitor converter [22–24], and interleaved converter [25–30].
In Table 1, the non-isolated bidirectional topology is compared for voltage gain ratio, switch
count, passive components, circuit characteristics, and application.
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Table 1. Comparison of non-isolated bidirectional converters.

Types of
NIBDC

Voltage Gain
VH/VL

Number of
Switches

Number of
Passive

Components
Characteristics Applications

Basic buck and
boost

1
1−D 2 3 • A low number of elements. Rechargeable power supply units [31].

Energy storage system [9,32].

Cuk −D
1−D 4 5

• Continuous Iin and Io.
• Eliminated ripples of Iin by

coupling the inductors.

Vehicle application [33]
Energy storage application [34].
Battery equalization
ultracapacitor–battery interface
circuits [35].

Sepic/zeta D
1−D 2 5

• Positive output voltage.
• Reduced current ripples using

an auxiliary branch.
Distributed power system [19].

Cascaded 1
1−D 4 3

• Higher voltage gain.
• Lower current stress.

Electric vehicle
motor drive application [36].

Switched
capacitor

2
1−D 4 3

• Low size and weight (no
inductor).

• Continuous input current
(needs parallel strings to
operate in anti-phase).

Uninterruptable power supplies
(UPSs) [37].
Battery charging–discharging.
Automotive system
voltage conversion [38].

Interleaved 1
1−D 2n = 4 2 + n

• Low switching frequency
current ripple.

• A smaller EMI filter is required.

Hybrid vehicle application [28].
High-power applications [39].

2.2. Isolated Bidirectional (IB) DC-DC Converter

For galvanic isolation high frequency, there is a transformer in an isolated bidirectional
DC-to-DC converter, making it bigger and heavier. Many applications need isolation to
protect safety sources from overload, reduce noise, and match voltages between circum-
stances [40]. Furthermore, isolation provides other advantages, including the ability to
implement multi-input/multi-output topologies and the ability to isolate sensitive loads
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from the input or output side. Switching converters come in two varieties. Stiff current
characteristics are present at the terminals of current-type (or “current-fed”) structures’
inductors, which serve as a conventional boost converter at the input terminals. It features
a capacitance with stiff voltage characteristics at its terminals that functions as a standard
buck converter at its input terminals in a voltage-type construction. There are many opera-
tional differences among these converters. There are many uses for isolated bidirectional
converters, but they are particularly well-suited to things like aero-planes, electric cars, and
alternative energy sources. Many researchers are interested in dual active bridge phase shift
converters because of their simple construction and bidirectional power flow capability.
Renewable energy systems use them because of their unique characteristics. A bidirectional
converter with a buck and boost function is known as a dual active bridge converter, and it
was first presented in [41]. Many applications may benefit from its simple construction,
control, isolation of converter ports, and bidirectional power flow [42–44]. Due to this wide
variety of use cases, greater attention is paid to the converter’s features, such as the soft-
switching range and efficiency [45–48]. A full bridge or current-fed full bridge performs
DC-AC conversion; b) in the second stage, a high-frequency transformer raises the AC
voltage and provides galvanic isolation. DAB’s general structure is shown in the following
diagram, Figure 4. Depending on the desired application, AC-DC rectification may be
completed using either an AC voltage-fed full bridge or an AC current-fed full bridge.
ZVS/ZCS may be achieved using the resonant tank and transformer. Figure 5 demonstrates
some isolated bidirectional converters, such as the buck–boost converter (Bidirectional
Flyback) [43,49–51], cuk converter [33,52–54], push–pull converter [55], IB forward con-
verter [49,56–59], dual half-bridge converter [45,60–63], and half–full-bridge converter [64].
Comparisons of isolated bidirectional topologies’ voltage gains, switch/inductor counts,
circuit characteristics, and use cases are shown in Table 2.
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Table 2. Comparison of isolated bidirectional converters.

Types of
IBDC

Voltage Gain
VH/VL

Number of
Switches

Number of
Passive

Components
Characteristics Applications

Flyback ND
1−D 2 2 Basic isolated topology.

Discontinuity of Iin.

Switched-mode power
converters [64].

Low–medium power
application [65].

Cuk ND
1−D 2 6

Continuous Iin and Io.
Eliminated ripples of Iin

Io
by

input/output-coupled inductors.

Electric vehicles [49,66];
energy bus-based

equalization network [67].

Push–pull ND 4 2 Continuous Io number of
windings of more than two. Energy storage [55,68].

Forward ND 3 2
Continuous Io.

Limited D.
Low-power level apps.

Energy storage system [69].
Low to medium applications

[70].

DAB Varies W.R.T
control scheme 8 2

Isolated bidirectional topology is
the most prevalent.

Suitable for applications
requiring high power or voltage.

DC microgrid [41,42,59].
Automotive applications [71].

Dual
half-bridge

Varies W.R.T
control scheme 4 6

There are fewer semiconductors
in use.

A lower-power alternative to
digital audio broadcasting (DAB).

Energy storage system [72].
Automotive
battery [73].

Half–full-
bridge

Varies W.R.T
control scheme 6 4

For UPS systems, this is the best.
Incorporates two switch
converters seamlessly.

Uninterruptable power
supply (power

factor-corrected) [74].
Electric vehicles [75].

3. Bidirectional Improvements towards Bidirectional Multiport Converters

Bidirectional DC-DC converters, essential for enabling power flow in both directions,
are increasingly used in energy storage, UPSs, electric vehicles, and renewable energy
systems. A 2019 study by reference [1] delved into their design and control, highlighting
non-isolated and isolated types, each with various groupings, schematics, and summaries.
It examined conventional control strategies, including PID, sliding mode, and digital con-
trols. Isolated converters saw advancements with phase-shifting techniques for improved
configurations and selection for specific applications.

JIAQI YUAN et al., in 2021 [76], provided a comprehensive review of bidirectional
OBC technologies, focusing on designs, smart modes, and industry standards. It detailed
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promising topologies and discussed wideband technologies, thermal management, and
system integration, including wireless charging.

Albert Bassa de Los Mozos and colleagues [77], in 2019, explored a three-port converter
for EV charging from PV panels, considering various technical aspects to determine the
most efficient and compact design.

Rafael et al.’s 2018 research [78] proposed a novel, bidirectional, multi-level EV battery
charger, integrating AC-DC and DC-DC converters with a split DC-link for varied voltage
levels to enhance smart grid integration.

Wang, H. et al. (2023) [79] introduced a technique leveraging a physics-informed net-
work to pinpoint the maximum torque per ampere (Mtpa) and flux-weakening trajectories
in electric drives, obviating the requirement for calibration.

Yang, X. et al. (2023) [80] developed a finite-time adaptive dynamic surface control
strategy for dual-motor servo systems, aimed at mitigating backlash and dynamic un-
certainties. Their study contributes to enhancing the synchronization and operational
performance of these systems, providing critical insights for the advancement of control
technologies in industrial environments.

Majid Hosseinpour et al., in 2020 [81], introduced a bidirectional multilevel inverter
with fewer switches, suitable for medium voltage applications, and tested its performance
and efficiency through simulation and experimentation.

Andrei Blinov’s 2018 study [82] presented a soft-switching bidirectional DC-DC con-
verter, demonstrating its functionality and efficiency through experimental validation
and highlighting its potential for low-voltage DC source integration into higher-voltage
DC buses.

The advantages of multiport bidirectional DC-DC converters over traditional ones,
as discussed in references [83–85], include their capability to integrate multiple energy
sources and loads, offering enhanced power management, system efficiency, and reduced
complexity and costs, which are vital for evolving energy systems and increased renewable
energy integration.

A multiport bidirectional DC-DC converter is typically proposed as an alternative to
a conventional bidirectional DC-DC converter due to its many valuable features and the
many situations in which it is superior [83,86–91].

Lin et al. (2022) [92] investigate the stability of three-phase grid-connected inverters
under weak grids with asymmetrical impedance, utilizing Ltp theory in the time domain.
In another study [93], they enhance passivity in grid-connected inverters through improved
synchronization units for weak grids.

Mohseni et al. (2018) [94] introduce a new high step-up multi-input multi-output
DC-DC converter, enhancing power conversion efficiency. Dezhbord et al. (2022) [95]
develop a high step-up three-port DC-DC converter with reduced voltage stress, aimed at
improving hybrid energy systems.

Chen et al. (2022) [96] present a new technique for the subdomain method in predicting
the electromagnetic performance of surface-mounted permanent magnet motors with
shaped magnets and a quasi-regular polygon rotor core. Li et al. (2022) [97] introduce a fast
and accurate calculation method for line breaking power flow based on Taylor Expansion.

Reliability and redundancy are enhanced with multiport converters. Managing multi-
ple power sources and paths increases the system’s resilience to failures or disruptions in
one or more energy sources. This reliability is invaluable in critical applications, such as
healthcare facilities or data centers, where uninterrupted power supply is essential. Addi-
tionally, the redundancy provided by multiport converters ensures continuous operation,
an essential requirement in many industrial and commercial settings [98,99].

Advanced control strategies are often incorporated into multiport converters, enabling
more dynamic and responsive power management. These strategies are necessary for
systems like microgrids, which operate independently and in conjunction with larger grids.
The advanced control capabilities allow for real-time adjustments in power flow, optimizing
the system’s performance under varying conditions. This level of control is significant in
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applications where energy demands fluctuate significantly, thus ensuring that the system
remains efficient and stable [21,100,101].

The benefits of multiport bidirectional DC-DC converters that make them preferred
include the following:

• Multiport converters can handle multiple energy sources and loads simultaneously.
This is particularly beneficial in systems like renewable energy, where solar, wind, and
other energy sources might need to be integrated.

• These converters offer more flexibility in managing power flow between different
ports, which can lead to increased overall system efficiency. They can optimally
distribute power based on the demand and availability of each source.

• By integrating multiple functions into a single converter, the complexity and cost of
the overall system can be reduced. This integration eliminates the need for multiple
separate converters and the associated interconnections.

• Multiport converters can provide higher reliability and redundancy. If one energy
source fails, the system can continue using other sources without interruption.

• These converters can implement advanced control strategies for power management,
which are crucial in systems like microgrids and hybrid electric vehicles.

• With the increasing use of distributed energy resources and the need for smart grid
technologies, multiport converters align well with these modern requirements, offering
better integration and control capabilities.

4. Multiport DC-DC Converters

Traditional approaches, which necessitate an extra converter for the energy storage
system, are often considered inefficient. This requirement for an additional converter is
seen as a substantial drawback. The multi-stage structure inherent in these methods can
result in increased final costs, lower power density, and a larger overall system size [77].
To address these limitations, a multiport converter is employed in applications requiring
multiple input energy sources, like fuel cells, wind turbines, and solar photovoltaic (PV)
systems. This approach streamlines the integration of various energy sources into a single
system, enhancing efficiency and reducing the complexity associated with conventional
methods [102].

This type of converter, falling under the multi-input converter category, can supply
the necessary power to the load using a single-stage method. Since these converters do not
incorporate an energy storage system, they may face limitations in meeting the required
power demands, significantly when the output power exceeds the input power. This
constraint highlights the need to carefully consider power management in systems that
rely solely on multi-input converters without energy storage backup [103].

Multiport DC/DC converters have a range of applications, including hybrid energy
systems, fuel cells, and systems requiring an uninterrupted electricity supply. These
converters are categorized into (a) isolated and (b) non-isolated.

Isolated converters separate the low- and high-voltage sides, allowing for high-voltage
conversion to match different voltage levels while minimizing the risk of shock hazards
by avoiding using semiconductors with high current/voltage ratings. This type typically
employs high-frequency transformers. However, a significant drawback of isolated con-
verters is their size and cost, primarily due to the substantial material requirements for the
transformer core.

On the other hand, while differing in structure, non-isolated converters also play
a crucial role in various applications, each type having its specific benefits and limita-
tions [104,105]. In contrast, non-isolated converters have a less complex design and are
utilized when galvanic isolation between the power source and the load is unnecessary.

This approach, particularly in non-isolated converters, can achieve high power density
at a lower cost, primarily due to the reduced number of components required. While
non-isolated converters efficiently match the input and output impedances of the source
and load, they cannot achieve a high voltage conversion ratio. This constraint highlights a
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trade-off between the benefits of simplicity, component reduction, and the ability to handle
large voltage conversions [106,107].

Many studies have been conducted on TPCs, but only a select handful have systemati-
cally investigated the process of TPC topology derivation or provided in-depth analyses of
various TPC classes. In ref. [108], a generic topology is provided, demonstrating the combi-
nation of DC-link and magnetic coupling, from which a series of multiport bidirectional
DC-DC converters are built. The converters derived from this straightforward process are
highly integrated and inexpensive. Isolated TPCs are built with full-bridge or half-bridge
converters; non-isolated TPCs cannot be generated this way. It follows that the general
configuration lacks robust universality. Ref. [95] suggests a method for building TPCs
using pulsing source cells (PSCs) and output filter cells derived from standard non-isolated
DC/DC converters. This method is easy to understand, versatile, and regular. However,
the resultant TPCs still have drawbacks, such as high switching costs, low power density,
and inadequate power transfer.

In ref. [109], a family of non-isolated TPCs is built by a combination and optimization
construction approach from dual-input and dual-output converters; these TPCs are instruc-
tive and valuable. Nonetheless, there is a lack of comprehensive knowledge about TPCs.
Power flow diagrams are used in [110] to methodically obtain the construction approach of
double-input single-output (DISO) DC/DC converters. Based on these diagrams, thirteen
different configurations of DISO converters are provided, each consisting of two basic units;
four converter configurations are appropriate for battery-connected applications. To obtain
DISO converters, simple units are swapped out for those with two outputs.

Additionally, the efficiency of various configurations is computed and compared
between theoretical estimates and experimental measurements. Because some parts of the
basic units, like inductors, are not shared, the power density of these derived converters is
low. In addition, other TPCs cannot be derived from these four configurations, including the
TPCs shown in [111–121], which comprise three fundamental units. In ref. [26,99], converter
designs are used to categorize, analyze, and compare isolated and non-isolated TPCs,
providing a more thorough overview of TPCs. As a result, the findings offer promising
directions for the further study of TPCs.

4.1. The Fundamental Principles of Operation for a Three-Port DC-DC Converter

In order to combine multiple DC sources in a single component, a three-port DC-DC
converter is utilized [108]. The configuration of the three-port DC-DC converter with
three input sources is shown in Figure 6.
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These three ports are connected to the three output DC sources as the following
renewable energy source: the DC bidirectional port is connected to the battery, and the
third port is connected to the wind energy source [109]. The powers among these three ports
can be illustrated in the following relationship:

Pout = Pin + Pb (1)
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where Pout represent the DC output power, Pin acts as the DC input power from the
renewable energy source, and Pb illustrates the DC input power from the battery [86].
Several types of three-port DC-DC converters are illustrated in the next section.

4.2. Non-Isolated Three-Port DC-DC Converters

Various non-isolated three-port DC-DC converters have been explored in the literature,
each employing different control and modulation techniques. Some of these converters
utilize a single inductor design, which helps maintain a smaller size and increases power
density. Additionally, there are three-port DC-DC converters that incorporate coupled
inductors. Coupled inductors are a strategic choice to enhance the voltage conversion
ratio, thereby addressing the limitations typically associated with non-isolated convert-
ers in achieving high-voltage conversions. This diversity in design and functionality
demonstrates the adaptability of three-port DC-DC converters to different application
requirements.

4.2.1. Dual-Input–Single-Output DC-DC Converters (DISO)

This type of converter proposed double input and single output for high and low
voltage. The buck–boost and the buck converter are combined in this converter, as shown
in Figure 7. There are four major operational modes based on the availability of input
voltage sources and the state of their respective switches’ conductivity (S1 and S2). The
low-voltage source (Vlow) is used to supply the base load, while a high-voltage source Vhi
meets the needs of the supplementary load. The input voltage sources charge the inductor
when their respective switches are ON. The diodes are reverse-biased when the switches
are ON, and the diodes allow for the discharge of the inductor current when the switches
are off [110]. Figure 7 presents the block diagram of the DISO mode.
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The relationship between the input–output voltage can be delivered from the volt-
second balance principle

V0 =
d1

1− d2
Vhi +

d2

1− d2
Vlow (2)

where:
d1 and d2: the duty ratio of switches S1 and S2, respectively;
V0: the output voltage.
Passive lossless switching can be connected in the circuit to reduce the switching loss

and increase overall efficiency [111].

4.2.2. Single-Input–Dual-Output DC-DC Converters (SIDO)

The SIDO is employed in many applications such as (mobile phones, digital cameras,
hand smartphones, and MP3 players). Figure 8 shows a block diagram of this type. Various
switches rapidly conduct inductor current to their output voltages in this method. The
other technique obtains output energy from the inductor complementary terminals [112].
In the third approach, the switched nodes charge the capacitors. A family of SISO is



Energies 2024, 17, 1575 11 of 37

delivered from the boost converter to step up or down applications. As a result, when the
number of switches is reduced, the converter’s overall cost decreases. The major problems,
such as high ripple and cross-regulation of output voltages, are solved using a SIDO buck
converter [113].
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The output voltages are controlled by adjusting the duty cycles, d1 and d2, and the
relationship between the input and output steady state is given by:

V0,1

Vin
=

d1d2R1

d2
2R1 + (1− d2)

2R2
(3)

V0,2

Vin
=

d1(1− d 2)R2

d2
2R1 + (1− d2)

2R2
(4)

The duty cycles are calculated as follows:

d1 =
I0,1

I0,1 + I0,2
, I0,1 + I0,2 = IL (5)

d2 =
V0,1

[
d2

2R1 + (1− d2)
2R2

Vind2R1
(6)

4.2.3. Single-Input–Single-Output Mode (SISO)

The equivalent circuit of this mode is presented in Figure 9. In this type, one switch is
ON, and the other switch is OFF. The battery supplies power to the load alone, while the
converter acts as a traditional boost converter [114].
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A non-isolated converter is proposed in [116,118,119] for solar PV applications that
contain a single inductor, three switches, and three diodes, as illustrated in Figure 10. The
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suggested converter is built from a dual-input converter by the addition of a new power
flow line, resulting in an additional control variable that can be implemented with any of
the six standard DC-DC converters, such as the buck, boost, buck–boost, zeta, sepic, and
cuk converters, and it is a part of the non-isolated three port DC-DC converter family [116].
Using appropriate control techniques, the power flow can be controlled between any two
of the three ports. Its benefits are high power capacity, smaller size, and higher efficiency.
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Figure 10. The converter proposed in [116].

In [119], a traditional buck–boost converter consists of a general cell with a diode,
switch, and battery storage, as shown in Figure 11, where the details of the analysis are
provided in [120]. This general cell can be connected to any traditional converter to form a
new three-port DC-DC converter, which is the advantage of this work because of its simple
computation and small size [119].
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In [121], a novel non-isolated three-port DC-DC converter was proposed by connecting
a traditional buck converter with a boost converter between these two converters, as an
additional switch, as illustrated in Figure 12. The benefit of this circuit is the ease of
operation and simplicity of control [121].
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A three-port DC-DC converter is proposed in another work by connecting a bidirec-
tional power flow path of the traditional converter with two unidirectional power flow
paths, as shown in Figure 13 [122]. By applying a multi-regulator competition control tech-
nique used to track a maximum power point tracking (MPPT), which is used to control the
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fluctuation in the PV system with the environment and weather, the experimental results
explain in detail the operation of this converter [122]. The advantage of this converter is
higher reliability and higher power capacity.
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transformer’s primary side and uses two switches to replace the diode in the output port. 

Figure 13. The converter proposed in [122].

4.3. Partly Isolated Three-Port DC-DC Converters

Partly isolated three-port DC-DC converters mean that one or two ports in the circuit
are isolated [109]. There are usually two types including the following: the first contains
two directly connected ports, while the third is connected with galvanic isolation. The
input to this third port is the output of these two ports. Then, they are connected to the
isolated output port, as illustrated in Figure 14 [123].
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The traditional half-bridge converter with a switch and a diode is connected to the 

transformer’s primary side and uses two switches to replace the diode in the output port. 

Figure 14. The structure of the three-port DC-DC converter partly isolated type 1.

The second type connected the two output ports directly without galvanic isolation,
and then a high-frequency transformer was connected to the input port, as shown in
Figure 15 [123].
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Based on a half-bridge converter, the three-port DC-DC converter is proposed in [104,124],
as briefly in Figure 16.
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The traditional half-bridge converter with a switch and a diode is connected to the
transformer’s primary side and uses two switches to replace the diode in the output
port. All the switches on the primary side can operate under zero voltage switches to
a wide range [124]. The duty cycle controls the power flow among these three ports by
controlling the two primary-side switches. The application of this converter is briefly
explained in [125–127]. The advantage of this circuit is strict load control and a wide range
of conduction [124–127]. Based on a half-bridge converter, a novel partly isolated three-port
DC-DC converter has been proposed [128,129]. This converter is utilized for the renewable
power system application, as shown in Figure 17 [129].
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The two switches at the transformer’s secondary side for synchronous regulation
of the voltage of the three ports can be regulated independently. The advantages of this
converter are high integration, simple structure, and fewer device numbers [130].

4.4. Fully Isolated Three-Port DC-DC Converters

Isolated three-port DC-DC converters employ a high-frequency transformer with
multiple windings, facilitating power transmission between the three ports. The essential
advantage of this type of converter is its high degree of galvanic isolation. Each of the
three outputs in this converter configuration has its dedicated component. In practical
applications, most isolated converters typically rely on either full-bridge or half-bridge
converters, or a combination of both, to manage the energy transition [131].

4.4.1. Multi-Input Total Bridge Converter (FBC)

A full-bridge DC-DC converter with a multi-winding transformer is shown in Figure 18.
This converter includes two input sources of varying amplitudes and the magnetic flux
produced in the transformer core. It has two power supplies, three winding transformers,
and a single output port. Increasing the number of input sources is possible while keeping
the output port and coupling transformer the same [132]. The voltage across the inductor
is given as follows:

VL1 =

(
VS1 −

n1

n3
V0

)
θ1

TS
2

+ VS1(1− θ1)
TS
2

= 0 (7)

where:

n1, n3 : The primary and secondary turns of the transformer;
VS1: The first input voltage supply; VL1: the voltage across the inductor;
θ1: The percentage of phase shift for Input Source 1; V0: The output voltage;
TS: The switching time.
The relationship between the first input source and output voltage and the second input
source and output voltage can be given as follows:

VS1 =
n1

n3
θ1V0 (8)

VS2 =
n2

n3
θ2V0 (9)

where θ2: the percentage of phase shift for Input Source 2.
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Reference [135] proposes a three-port converter design that includes three active full 
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single power conversion stage. This design employs a high-frequency link to regulate the 
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4.4.2. Multi-Input Half-Bridge DC-DC Converters (HBCs)

The half-bridge converter (HBC) is recognized as one of the most straightforward
isolating topologies. The primary switches are usually operated in an alternating or
complementary sequence in this setup. The input capacitors are often treated as voltage
sources in a half-bridge converter. This converter is called a “symmetrical half bridge”
because it utilizes two similar switches controlled by identical signals that are phase-shifted
by 180 degrees. Conversely, an asymmetrical half-bridge employs driving signals that are
not identical. Figure 19 illustrates the equivalent circuit of a three-port half bridge [60].
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Figure 19. Multi-input half-bridge DC/DC converter [134].

In ref. [131], as proposed with the three-port converter topology, the battery charger
and DC-DC converter are combined in a single device. One port of the three-port converter
is inactive, while the other two are active. A virtual isolation system is presented to prevent
electricity from flowing into an idling port. The proposed converter is shown in Figure 20.
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Figure 20. The proposed converter in [131].

Reference [135] proposes a three-port converter design that includes three active full
bridges, two series-resonant tanks, and a three-winding transformer, all integrated into
a single power conversion stage. This design employs a high-frequency link to regulate
the power flow among batteries, load, and a renewable energy source like a fuel cell. The
converter can complete bidirectional power transfers between the battery and the load.
This proposed converter design is showcased in Figure 21.
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Figure 23. The proposed converter in [137]. 

4.4.3. Comparison of Three-Port Converters 

The primary objective of these three-port DC-DC converter architectures is to miti-

gate the intermittent characteristics of renewable energy by utilizing energy storage and 

Figure 21. The proposed converter in [135].

In reference [136], a new three-port DC/DC converter design is introduced, featuring
three half-bridge structures as a replacement for the full-bridge structures typically used in
converters, as depicted in Figure 22. Additionally, this converter incorporates a boost half-
bridge circuit as one of its three half-bridge components. This particular circuit facilitates
the energy storage system’s bidirectional charging and discharging functions.
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Ref. [137] investigated the use of an inductor in the input port to minimize ripples in
the input current, as shown in Figure 23.
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4.4.3. Comparison of Three-Port Converters

The primary objective of these three-port DC-DC converter architectures is to mitigate
the intermittent characteristics of renewable energy by utilizing energy storage and a
single DC-DC converter with dual inputs. Over the past ten years, numerous designs for
three-port DC-DC converters have emerged, each with unique advantages and challenges.
This study provides a comparative analysis, focusing on factors such as the number of
components, cost, complexity, and reliability of these converters. This comparison aims
to facilitate the selection of appropriate three-port converters for practical applications, as
detailed in Table 3 [138].

Table 3. Comparison of three-port converters [138,139].

Structure of Converter No. of Component Cost Complexity Reliability Efficiency

Non-isolated Few Low Simple High Less

Partially isolated Medium Medium Medium High Medium

Fully isolated More High Complex Low High

Regarding the cost of control circuits, non-isolated three-port converters are generally
more affordable. They require fewer power-switching devices and have a lower total
component count than their partly isolated and fully isolated counterparts. However, the
cost of fully isolated and partially isolated three-port converters can increase due to the
necessity of a high-frequency transformer. Non-isolated converters employing coupled-
inductor topologies are more expensive than other converter types.

System complexity is primarily determined by the number of components and con-
trollers, with complexity rising as these increase. The design of non-isolated three-port
converters is the simplest as they do not include transformers and have fewer components
than the fully isolated and partially isolated versions. The fully isolated converter is more
complex, incorporating three winding transformers and accommodating unidirectional
and bidirectional ports.

Reliability is a crucial metric for evaluating the performance of converters. Generally,
reliability tends to diminish as the operational time increases. At the component level,
reliability decreases with an increased number of switches used in the converter. Conse-
quently, non-isolated and partially isolated converters often exhibit higher reliability than
fully isolated converters.

Several factors influence efficiency, including the topological structure, rated power,
switching frequency, and selection of components. Systems with fewer power conversion
stages typically show improved efficiency. Thus, the topological structure significantly
affects the system’s efficiency. Since in many designs, a large portion of the power is
transmitted directly to the load port along the primary path, reducing the number of power
conversion stages is possible, further enhancing efficiency.

Based on the most recent research in this area, a comparative analysis of prior studies
was conducted to aid in choosing the appropriate type of DC/DC converter for renew-
able energy applications. The key findings and insights from these previous studies are
conveniently summarized in Table 4.
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Table 4. Summary of the previous work.

Refs. Structure of
Converter

No. of
Semiconductors

No. of
Inductors No of Winding Capacity Efficiency Benefits

[116–118] Non-isolated 3 switches and 3
diodes 1 NW 1 KW 97.2%

1—High power capacity.
2—Smaller size.

3—Higher efficiency.

[119,120] Non-isolated 2 switches and 2
diodes 1 NW 24 W - 1—Simple computation.

2—Small size.

[121] Non-isolated 3 switches and 3
diodes 2 NW 100 W - 1—Ease of operation.

2—Simplicity of control.

[117] Non-isolated 4 switches and 3
diodes 2 NW 400 W 92% 1—Higher reliability.

2—Higher power capacity.

[135] Non-isolated 1 switch and 5
diodes 2 NW 24W -

1—Only one switch.
2—Small size. 3—Long life

span of the battery.
4—Cost efficient.

[104,124–127] Partially isolated 5 switches and 1
diode 1 transformer 3 200 W -

1—Strict load control.
2—Wide range of

conduction.

[128–130] Partially isolated 4 switches and 1
diode 1 transformer 3 120 W

1—High integration.
2—Simple structure.

3—Fewer no. of devices.

[136] Partially isolated 4 switches and 4
diode 1 transformer 2 180 W 94%

1—Bidirectional power
flow.

2—Reduced input current
ripple.

[137] Partially isolated 6 switches 2, 1 transformer 2 300 W -

1—Minimized input
current ripples.

2—Bidirectional power
flow between any two

ports.
3—Soft switching of all

switches and cost efficient.

[131,140–144] Isolated 12 switches 1 transformer 3 1.5 KW 91.7%

1—Higher voltage
conversion ratio.

2—All three ports have
galvanic isolation.

[145] Isolated 12 switches 1 transformer 3 500 W

1—High switching
frequency.

2—Higher voltage
conversion ratio.

[56] Isolated 6 switches 1 transformer 3 1 KW 92%
The voltage across the

half-bridge remains
constant.

[146] Isolated 6 switches 2, 1 transformer 3 2.5 KW - Continuous input current.

[147] Isolated 10 switches 2, 1 transformer 3 - -

1—Small input current
ripples. 2—Naturally soft

switching. 3—Low voltage
stresses of the primary side

switches.

5. Proposed Three-Port DC-DC Converter

The proposed three-port dual-input bidirectional DC-DC converter is well suited
for standalone renewable energy systems that incorporate a battery pack for consistent
energy supply and require efficient power flow management, as shown in Figure 24. The
converter’s design includes three switches, six diodes, two inductors, and three capac-
itors, enabling it to handle various operational scenarios, particularly in photovoltaic
systems where the energy input is subject to climatic variations. The converter operates in
two main phases as follows: Phase I, which manages power from both the PV source and
the battery (with the battery discharging), and Phase II, where it directs power from the PV
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to both the battery and the load. Each phase encompasses three specific operational modes,
making for a total of six, to ensure a steady and regulated output voltage across different
weather conditions.
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In Phase I, the converter’s modes adjust to changes in the relative voltages of the PV
and the battery to optimize power flow to the load. For instance, when the battery voltage
exceeds the PV voltage, sure diodes switch off to direct power flow appropriately, and
similarly, when the PV voltage becomes dominant, the configuration changes to leverage
this source. Phase II’s modes are designed to optimize the charging of the battery while also
supplying power to the load, with specific switches and diodes activating or deactivating
to manage the dual outputs efficiently.

The converter’s operational efficiency and adaptability are further supported by de-
tailed voltage and current equations for each mode, following principles such as Kirchhoff’s
Voltage Law and the volt-second balance law. These equations help understand the dynam-
ics of power flow through the converter and are crucial for designing a control strategy that
ensures optimal performance under varying conditions. The converter’s design, character-
ized by its specific combinations of active and passive components and operational modes,
show cases a sophisticated solution for managing power in standalone renewable energy
systems, ensuring reliability and efficiency in energy conversion and supply.

The mathematical equations of the proposed converter depend on two distinct phases
to conclude the proposed converter. In Phase I, the converter functions with two inputs
including the PV (VPV) and the battery (Vb), with the battery in a discharging state. Phase
II features the converter operating with dual outputs, where the PV source supplies power
to both the battery and the load. In each phase, the converter operates in three modes as
follows: 1, 2, and 3 for Phase I and 4, 5, and 6 for Phase II.

The six operational states of the converter are comprehensively discussed in this
section, as depicted in Figures 25a–c and 26a–c, respectively. The components of the
converter include switches S1, S2, and S3, diodes D1, D2, D3, D4, and Do, inductors L1 and
L2, and capacitors C1, C2, and Co.
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5.1. Dual Input

During Phase I, the VPV and Vb sources supply power to the load. In this phase,
switches S1 and S3 are sequentially activated and deactivated, while switch S2 remains
deactivated, as depicted in Figure 27a.
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5.1.1. Mode 1

In this scenario, both switches S1 and S3 remain in the ON state. Diodes D1, D3, and
D5 are OFF if the battery voltage exceeds the PV voltage, as depicted in Figure 25a. During
this mode, the capacitors and the inductor are charging. The capacitors are in the process
of charging and, simultaneously, the capacitor CO discharges to the load. By applying
Kirchhoff’s Voltage Law (KVL), the voltage across the inductors and capacitors can be
described as:

VL1 = Vb
VL2 = Vb + VC1

VC2 = Vb

 (10)

5.1.2. Mode 2

In this situation, switch S1 remains closed while S3 is open, as Figure 25b depicts.
Diode D1 enters a forward-biased state because the battery voltage Vb is no longer more
significant than the PV voltage VPV, thereby removing the reverse bias across diode D1.
Diodes D2 and D4 continue to be in a forward-biased state. Capacitors C and inductors L
keep charge throughout this mode, but the PV source powers them this time. Diode Do,
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connected to the output filter, remains OFF. The capacitors maintain their state as in the
previous mode. The voltage across the inductors and capacitors can be described as:

VL1 = Vpv
VL2 = Vpv + VC1

VC2 = Vpv

 (11)

5.1.3. Mode 3

In this state, switches S1, S2, and S3 are non-conductive, as Figure 25c shows. Diodes
D1 and D5 are ON, enabling the PV voltage (VPV) to power the load. All remaining
diodes, however, are in the OFF state. Specifically, diode Do is connected to the output
filter. The photovoltaic (PV) source supplies power to the system, while the capacitors
and inductors discharge to increase the output voltage. At the same time, capacitor CO
charges and discharges to the load. The voltage across the inductors and capacitors can be
characterized as:

VL1 = VC1 (12)

Vpv + VC1 −VL2 + VC2 −VO = 0 (13)

VL2 = 2Vpv + VC1 −VO (14)

The equations of the modes above can be expressed as a result of applying the volt-second
balance law at a steady state to the inductor equations:

VL1TON = VL1TOFF (15)

where TON = D1T and TOFF = (1− D1)T or TON = D3T and TOFF = (1− D3)T.

VC1 =
D3Vb

1−D3
or VC1 =

D1Vpv

1−D1
(16)

VL2TON = VL2TOFF (17)

(Vb + VC1)D3T +
(
Vpv + VC1

)
(D1 −D3)T =

(
VO − 2Vpv −VC1

)
(1−D1)T (18)

The output voltage is determined by simplifying Equation (18) and substituting Equation (16):

VO =
Vpv(D1(D1 − 2)−D3 + 2)

(1−D1)
2 +

VbD3

(1−D1)(1−D3)
(19)

The output current (Io) equals (Io = Vo
R ), and by substituting Equation (19), and it can be

expressed as:

Io =

(
Vpv(D1(D1 − 2)−D3 + 2)

(1−D1)
2 +

VbD3

(1−D1)(1−D3)

)
1
R

(20)

5.2. Dual Output

During Phase II, the power is supplied to Vb, and the load comes from the input
source VPV. Switch S3 continues to be OFF throughout this phase, while switches S1 and
S2 are subject to varying degrees of conduction.

5.2.1. Mode 4

Switch S1 stays in the ON state in this scenario. Diode D1 becomes reverse-biased
if the storage element (SE) voltage exceeds the PV source voltage. During this mode, the
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capacitors and the inductors are charged. Diodes D2 and D4 remain in a forward-biased
state, while diode Do, connected to the output filter, remains in the OFF state, as shown
in Figure 26a. Energy is stored in capacitors and inductors, and capacitor CO discharges
to the load. Figure 27b illustrates different modes of analysis and the waveforms of the
proposed topology. By applying Kirchhoff’s Voltage Law (KVL), the voltage across the
inductors and capacitors can be described as:

VL1 = VPV
VL2 = Vpv + VC1

VC2 = Vpv

 (21)

5.2.2. Mode 5

In this mode, distinct from Phase I, switch S2 remains in the ON state, as shown in
Figure 27b. The battery charges in this mode, with the PV source supplying power to
both the battery and the load, marking it as a dual output mode, as shown in Figure 26b.
Switches S1 and S3 are in an open condition. Diode D1 is in a forward-biased state as the
battery voltage Vb is no longer higher than the PV voltage VPV, effectively removing the
reverse bias across diode D1. Diodes D2 and D4 are non-conducting. During this mode,
the inductors and capacitors continue to charge, but the PV source powers them this time.
Diode Do, connected to the output filter, conducts as the reverse bias across it is removed,
allowing capacitor Co to transfer energy toward the load.

VL1 = VC1 (22)

VL2 = Vpv + VC1 −Vb (23)

5.2.3. Mode 6

Switch S1 is not conducting in this particular segment, and S2 and S3 remain OFF,
as shown in Figure 26c. Diode D1 remains forward-biased, with the PV voltage (VPV)
supplying power to the load. Diodes D2 and D4 are in the OFF state. The capacitors and
the inductors continue to discharge during this mode, with the power supplied by the PV
source. Diode Do, connected to the output filter, remains conducting. The voltage across
the inductors and capacitors can be described as:

VL1 = VC1 (24)

Vpv + VC1 −VL2 + VC2 −VO = 0, then:

VL2 = 2Vpv + VC1 −VO (25)

The equations of the modes above can be expressed as a result of applying the volt-second
balance law at a steady state to the inductor equations:

VL1TON = VL1TOFF (26)

where TON = D1T and TOFF = (1−D1 −D2)T.

VC1 =
D1Vpv

1−D1 −D2
(27)

VL2TON = VL2TOFF (28)

(
Vpv + VC1

)
D1T +

(
Vpv + VC1 −Vb

)
D2T =

(
VO − 2Vpv −VC1

)
(1−D1 −D2)T (29)
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The output voltage is determined by simplifying Equation (29) and substituting Equation (27):

VO =
Vpv

(
2D2

2 + 2D1D2 − 2D1 − 3D2 + 2
)

(1−D1 −D2)
2 − VbD2

(1−D1 −D2)
(30)

The output current (Io) equals (Io = Vo
R ), and substituting Equation (30), and it can be

expressed as:

Io =

Vpv

(
2D2

2 + 2D1D2 − 2D1 − 3D2 + 2
)

(1−D1 −D2)
2 − VbD2

(1−D1 −D2)

 1
R

(31)

Reducing current and voltage stress in a proposed converter significantly impacts the
reduction in power loss. By minimizing the current flowing through components during
both the ON and OFF periods, as detailed in the equations for current stress, the I2R losses,
which are proportional to the square of the current through resistive components, are
substantially decreased. Similarly, reducing voltage stress, as outlined in the voltage stress
equations, decreases the electrical stress on components, leading to lower leakage currents
and capacitive losses, which are voltage functions. Lowering these stresses enhances the
converter’s efficiency by reducing power dissipation and potentially extends the compo-
nents’ lifespan by operating them within more favorable conditions. This combined effect
produces a more efficient, reliable, and durable power conversion system. In the below
section, current stress and voltage stress equations are presented.

5.3. Current Stress Equations

Equations (32) and (33) describe the charge dynamics of the output capacitor CO
during the switching cycle. Co+ represents the charge accumulated during the ON time
(when the switch is closed), and Co- represents the charge during the OFF time (when
the switch is open). The net charge over a cycle should balance to maintain steady-state
conditions, implying that the charge gained during the ON time equals the charge lost
during the OFF time.

Equation (34) gives the current through the output capacitor Co during the OFF period,
denoted as ICo− off. This equation assumes that the net charge change over one cycle is zero,
leading to a relationship between the duty cycles (D1 and D3) and the output current Io.

Equation (35) is a variation of (34), expressing ICo− off in terms of the output voltage
Vo and load resistance R, assuming Ohm’s law, where Io = Vo/R.

Equations (36) to (38) describe the current through diode Do during its OFF period,
denoted as IDo− off. This current is the sum of the capacitor’s OFF and output current,
reflecting the diode’s role in directing the current flow when the switch is open.

Equation (39) establishes that the currents through the inductor L2 and capacitor C2
are equal to IDo− off during the OFF period, indicating these components discharge their
stored energy to the output and load.

Equation (40) focuses on the current through capacitor C1 during the ON period,
derived from the charge balance over a switching cycle. It shows how the duty cycle affects
the charging current of C1.

Equation (41) states that the current through capacitor C1 during the OFF period
is the difference between the currents through inductors L2 and L1, reflecting energy
redistribution in the circuit.

The output capacitor Co is discharged during the ON time and charged again during
the OFF period. Therefore, at steady state, the charge across Co at each switching cycle is:

QCO+
= Io(D1 − D3)T (32)

QCo− = ICo−o f f (1− D1)T (33)
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During each cycle of the switching process, QCO+
= QCO− , and as a result, the current

that flows through a capacitor during its off period is determined by an ideal output
capacitor (CO).

ICO−o f f =
(D1 − D3)

(1− D1)
Io (34)

ICO−o f f =
(D1 − D3)

(1− D1)

Vo

R
(35)

The current through a diode, denoted by Do, during the period in which it is not
conducting, is:

IDo−o f f = ICo−off + Io (36)

IDo−o f f =
(D1 − D3)

(1− D1)
Io + Io (37)

IDo−o f f =
(1− D3)

(1− D1)
Io (38)

Also, the current of inductors and capacitors (L2, C2) during switching are OFF, and
they are connected in series to discharge their stored energy to the output capacitor (CO)
and the load through the output diode (Do). As a consequence:

IL2 = IC2 = IDo−o f f =
(1− D3)

(1− D1)
Io (39)

During the ON and OFF periods, capacitor C1’s charge increases and decreases,
respectively. In each switching cycle, QC1+ = QC1− , and as a result, the capacitor’s current
during the on period is:

QC1+ = QC1−

IC1−on =
(1− D1)

(D1 − D3)
× (1− D3)

(1− D1)
Io =

(1− D3)Io

(D1 − D3)
(40)

IC1−off = IL2 − IL1 (41)

5.4. Voltage Stress Equations

Equations (42)–(46) relate to the voltage stresses across various diodes (Do, D2, and
D1) during different operational phases. These equations are derived from Kirchhoff’s
Voltage Law (KVL), ensuring that the sum of voltages around a closed loop is zero. They
show how the voltages across the diodes are influenced by the output voltage Vo, the
photovoltaic voltage Vpv, and the battery voltage Vb.

Equations (47) and (48) describe the voltage stress across diode D5 during the ON-
switch phase, considering the voltages of the photovoltaic source, capacitor C1, and the
diode itself.

Equations (49)–(51) focus on the voltage stresses across the MOSFET switches (S1,
S2, and S3) during the OFF-switch phase, applying KVL to determine the relationships
between the switch voltages, the photovoltaic source, and the battery.

Equation (52) describes the voltage stress across diode D4 during the OFF-switch
phase, considering inductor VL1, photovoltaic Vpv, and switch voltage VS.

Vpv −Vdo −VO = 0 or Vb −Vdo −VO = 0 (42)

Vdo = −
(
VO −Vpv

)
(43)
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During the OFF switch, the voltage stress across D2 is:

Vpv −Vd2 −VO = 0 (44)

Vd2 = −
(
VO −Vpv

)
(45)

Vd1 =
(
Vpv −Vb

)
(46)

Also, the voltage stress across D5 during the ON switch is:

Vpv + VC1 + Vd5 = 0 (47)

Vd5 = −
(
Vpv + VC1

)
(48)

According to KVL, the voltage stress across the MOSFET switch during the OFF
switch is:

VS1 + VC2 + VO = 0
VS1 = VO −Vpv

}
(49)

VS3 = Vpv −Vb (50)

VS2 = Vo −Vb (51)

During the OFF switch, the voltage stress across D4 is:

Vd4 = Vpv + VL1 −VS (52)

5.5. Design of Passive Elements

To achieve optimal performance and explore the objectives of this topology, this section
focuses on the design of inductors (L) and capacitors (C).

The L1 can be designed during the ON switch, and we obtain the following:

Vpv = VL1 = L1
∆iL1

∆t
(53)

L1 =
Vpv∆t
∆iL1

(54)

L1 =
Vpv(D1 − D3)

fs∆iL1
(55)

Similarly, for L2, during the ON switch, we obtain the following:

VL2 = Vpv + VC1 (56)

L2 =
Vpv(D1−D3)

fs∆iL2(1−D1)
(57)

The storage of energy concept can be used to design the output capacitor CO (∆Q = C∆VO,
∆Q = IO(1−D1)T, ∆Q = VO(1−D1)

R fs
) as:

Co =
VO(1−D1)

R fs∆VO
(58)
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The value of capacitor C1 can be estimated as follows, based on the relationship between
the current flowing through the capacitor and the voltage across it:

iC1 = C1
∆VC1

∆t
→ C1 =

iC1∆t
∆VC1

(59)

Similarly, for capacitor C2, we obtain:

iC2 = C2
∆VC2

∆t
→ C2 =

iC2∆t
∆VC2

(60)

5.6. Simulation and Experimental Results

The empirical evaluation of the described system through prototype testing offers a
compelling insight into the functionality of a dual-input converter designed to harness
energy from both a photovoltaic solar panel emulator and a battery. The setup utilized
a 12 V battery in conjunction with a 20 V solar panel emulator, effectively simulating a
hybrid energy system that combines the reliability of stored energy with the sustainability
of solar power. The system’s configuration was meticulously engineered to achieve an
output voltage of 84.923 V and a converter output power rating of 250 W, with a switching
frequency maintained at 50 kHz. This high-frequency switching is instrumental in reducing
the size of the inductors and capacitors, which were carefully selected to be 670 µH for
the inductors (L1 and L2) and 100 µF for the capacitors (C1, C2, and Co), optimizing the
system for energy efficiency and stability, the prototype circuit of the proposed dual input
converter can be shown in the Figure 28.
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The waveforms depicted in Figures 29–34 provide a detailed view of the system’s
performance, showcasing the converter’s ability to step up the input voltage to meet the
higher voltage requirements of the load. This feature is particularly notable in scenarios
where the energy supplied by the solar panel exceeds the immediate demands of the load,
allowing the system to operate without drawing power from the battery. Such operational
efficiency extends the battery’s lifespan and emphasizes the converter’s capability to
prioritize renewable energy sources over stored energy, thus aligning with sustainable
energy utilization goals.
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Furthermore, the system demonstrated an exceptional efficiency of 97.78%, a testament
to its design and operational effectiveness. This high efficiency level ensures minimal energy
loss during conversion, making the system highly suitable for applications where energy
conservation and efficiency are paramount. The successful validation of the converter’s
performance through theoretical analysis and empirical testing confirms its practical feasi-
bility. It underscores its potential application in various domestic and industrial settings,
where integrating renewable energy sources with traditional energy storage is desirable.
The findings from this experiment highlight the advancements in converter technology,
paving the way for more sustainable and efficient energy systems.

5.7. Comparative Study

Various multiport DC-DC converters are compared in Table 5. Each system’s reference
numbers, including the proposed system, range from [126–137]. Each output voltage and
four parameters (number of inductors (NL), number of capacitors (NC), number of switches
(NS), and number of diodes (ND)) are listed in the table. The last column shows whether the
systems are bidirectional or unidirectional, where “Yes” indicates bidirectionality and “No”
indicates unidirectionality. As a new model, the “proposed” system is more straightforward
and can function in both directions.

The proposed multiport DC-DC converter, characterized by its relatively straightfor-
ward design featuring two inductors, two capacitors, three switches, and six diodes, stands
out for its bidirectional capability, allowing energy flow in both directions, which is crucial
for applications like renewable energy systems, battery storage, and grid-tied systems.

Its output voltage equation, Vpv(D1(D1−2)−D3+2)

(1−D1)
2 + VbD3

(1−D1)(1−D3)
, indicates a sophisticated

relationship between duty cycles and input voltages, suggesting a need for precise control
strategies to manage the complex power flow dynamics. Despite its higher diode count,
which hints at a complex internal topology, the converter’s design balances simplicity in the
component count with the advanced functionality afforded by its bidirectionality, making
it a compelling choice for modern energy conversion and management applications.
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Table 5. Comparison of the proposed with the related work.

Ref. Output Voltage NL NC NS ND Bidirectional

[83] Voutput =
D1

1−D1
VPV +

D2
2−D1D2

(1−D1)(1−D2)
VPV 3 3 4 2 no

[86] Voutput =
VPV (2−D1−D3)+Vb D3

(1−D1)
1 2 3 4 no

[87]
Voutput

Vin1
= 1

(1−d1)
Voutput

Vin2
= 1

(1−d2)

3 4 6 0 Yes

[88] Voutput =
1

(1−d1)
VPV 2 3 3 2 Yes

[148]
VO1 =

Vs1dss1+Vs2(1−dss1+dss2)
(1−dso1)

VO2 = Vs2(dso2 + dss12 − dss1) + Vs1(dso2 + dss1 − 1)
2 2 6 5 Yes

[149] VO = (1−d1d2)
(1−d1)(1−d2)

1 3 2 2 Yes

[89] Vo = Vi
2

1−2δ
1 4 2 5 No

[89] VO = 2
(1−d) 2 2 4 - No

[91] Vo = [1+(α2+α3)(α4−2)]V1+(2−α4)[(α1+α2)+V2+α3V3]

(1−α4)
2 2 2 4 4 no

[150] VO = 4
(1−d) 4 6 2 9 no

[94] VO = m
(1−d) 4 7 4 7 no

[95] d(1 + 2n)/(1− d) 1 4 3 5 yes

proposed Vpv(D1(D1−2)−D3+2)
(1−D1)

2 + VbD3
(1−D1)(1−D3)

2 2 3 6 yes

6. Discussion and Future Recommendations

Because of their capacity to incorporate numerous renewable resources and energy
storage systems into a single conversion stage, multiport DC-DC converters are gaining
prominence in renewable energy applications. This integration allows for various ports
to meet their energy needs more effectively. Peak shaving, PV firming, and BSS charging
are standard power flow modes in these systems. The design and choice of converter
structure are influenced by the specific operating states of the multiport converter, which
define each mode. Significant features of these systems include optimizing grid profiles,
reducing energy costs during off-peak and peak periods, and utilizing control approaches
customized to the converter’s operating states. Battery storage systems are increasingly
used for tasks such as PV firming and peak shaving as energy storage costs continue to
decline and the practicality of renewable energy sources expands [151,152].

Future recommendations for multiport DC-DC converters in renewable energy sys-
tems emphasize the importance of ongoing development and optimization. This incorpo-
rates improving control strategies to regulate power distribution among different ports,
advancing converter design to enhance efficiency, and integrating emerging technologies
such as machine learning for predictive analytics. Furthermore, an increasing emphasis is
on creating economical, easily expandable solutions to promote broader acceptance and
the utilization of various renewable energy applications. As technology advances, these
converters will have a crucial role in optimizing the capacity of renewable energy sources.
There are several future recommendations as follows:

• Power flow management among an electric vehicle’s battery, photovoltaic system,
and fuel cell can be achieved with the help of advanced control algorithms. Adaptive
responses to fluctuating energy demands and storage capacities are part of this process,
which also involves real-time monitoring.
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• Optimal energy harvesting from PV systems, efficient energy storage in EVs, and
effective use of fuel cells as a backup or supplementary power source are all areas that
could benefit from better energy management.

• Emphasize a smooth integration of these systems, focusing on electric vehicles, PV
modules, and fuel cells so that the converters can efficiently balance the load and
source dynamics.

• Improved interoperability: Considering different protocols and standards, work on
making multiport converters more compatible with electric vehicles, PV systems, and
fuel cell technologies of all kinds.

• Get a feel for how these technologies will affect the environment through thorough life-
cycle and sustainability analyses; the goal should be to find environmentally friendly
and long-lasting solutions.

• Examining the potential interactions between these interconnected systems and the
grid to enhance grid stability is an essential area of research, particularly in scenarios
with a high penetration of renewable energy sources.

• Investigate novel converter topologies that can improve system performance by effec-
tively managing the power demands and properties of electric vehicles, PV systems,
and fuel cells.

• Dependability and longevity: Highlight the dependability and longevity of convert-
ers in a range of operating conditions, such as harsh weather, heavy usage, and
extended operation.

• Analyze the market potential, scalability, and cost–benefit analysis of integrating these
technologies to drive commercial adoption and policy support. Also, consider the
economic viability of the project.

• The development and influence of standardization and regulatory frameworks is an im-
portant area to focus on to ensure these technologies’ smooth and efficient integration.

7. Conclusions

This study examined several bidirectional DC-DC converter topologies and their uses.
According to this study, multiport converters, or MPCs, have demonstrated exceptional
performance compared with multiple independent power supplies, especially in grid-
connected setups and electric vehicles (EVs). By lowering complexity and the number
of components needed, MPCs make integrating multi-output applications and hybrid
energy sources easier. Furthermore, their straightforward control circuit design improves
energy management between the input and the load and facilitates load regulation. MPCs
are, therefore, becoming more and more critical in scenarios involving multiple inputs
and outputs.

According to the literature review, no single converter topology can fully capture
the advantages of low-power devices, passive components, complex control, and high
reliability. Each topology has advantages and disadvantages of its own. Ongoing efforts
aim to create new multiport converters for various uses. This article’s difficulties and
potential paths will help create MPCs with improved performance.

A unique multiport DC-DC converter intended for stand-alone applications is also
presented in this paper. By combining two sources into a single load, this converter mini-
mizes the number of components, thereby lowering power losses and system dimensions.
Its bidirectional buck–boost design connects sources and loads with different voltage and
power levels with great versatility. Simulation and experimental results demonstrate the
converter’s ability to maintain the boosted DC link voltage with or without PV availability.
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122. Zhou, Z.; Wu, H.; Ma, X.; Xing, Y. A Non-Isolated Three-Port Converter for Stand-Alone Renewable Power System. In Proceedings
of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012.

123. Bayat, P.; Baghramian, A. Partly Isolated Three-Port Dc-Dc Converter Based on Impedance Network. IET Power Electron. 2020, 13,
2175–2193. [CrossRef]

124. Qian, Z.; Abdel-Rahman, O.; Reese, J.; Al-Atrash, H.; Batarseh, I. Dynamic Analysis of Three-Port Dc/Dc Converter for Space
Applications. In Proceedings of the 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition,
Washington, DC, USA, 15–19 February 2009.

https://doi.org/10.1109/TPEL.2021.3069862
https://doi.org/10.1109/TIM.2020.3025396
https://doi.org/10.1109/TPEL.2011.2127488
https://doi.org/10.1016/j.rser.2014.08.033
https://doi.org/10.1109/TPEL.2009.2033926
https://doi.org/10.1109/TIE.2007.911199
https://doi.org/10.1049/iet-pel.2011.0181
https://doi.org/10.1049/rpg2.12356
https://doi.org/10.1016/j.rser.2015.11.079
https://doi.org/10.1109/TIE.2006.882001
https://doi.org/10.1109/TIE.2014.2327599
https://doi.org/10.1109/TPEL.2011.2172465
https://doi.org/10.1109/TPEL.2012.2221746
https://doi.org/10.1049/iet-pel.2019.1348


Energies 2024, 17, 1575 36 of 37

125. Qian, Z.; Abdel-Rahman, O.; Pepper, M.; Batarseh, I. Analysis and Design for Paralleled Three-Port Dc/Dc Converters with
Democratic Current Sharing Control. In Proceedings of the 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA,
USA, 20–24 September 2009.

126. Qian, Z.; Abdel-Rahman, O.; Hu, H.; Batarseh, I. Multi-Channel Three-Port Dc/Dc Converters as Maximum Power Tracker,
Battery Charger and Bus Regulator. In Proceedings of the 2010 Twenty-Fifth Annual IEEE Applied Power Electronics Conference
and Exposition (APEC), Palm Springs, CA, USA, 21–25 February 2010.

127. Qian, Z.; Abdel-Rahman, O.; Zhang, K.; Hu, H.; Shen, J.; Batarseh, I. Design and Analysis of Three-Port Dc/Dc Converters for
Satellite Platform Power System. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ,
USA, 17–22 September 2011.

128. Wu, H.; Chen, R.; Zhang, J.; Xing, Y.; Hu, H.; Ge, H. A Family of Three-Port Half-Bridge Converters for a Stand-Alone Renewable
Power System. IEEE Trans. Power Electron. 2011, 26, 2697–2706. [CrossRef]

129. Wu, H.; Xing, Y.; Chen, R.; Zhang, J.; Sun, K.; Ge, H. A Three-Port Half-Bridge Converter with Synchronous Rectification for
Renewable Energy Application. In Proceedings of the 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA,
17–22 September 2011.

130. Zhang, J.; Wu, H.; Cao, F.; Xing, Y.; Ma, X. Analysis and Design of Dc Distributed Dc Power System with Modular Three-Port
Converter. In Proceedings of the 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, Turkey, 1–4
June 2014.

131. Duarte, J.L.; Hendrix, M.; Simões, M.G. Three-Port Bidirectional Converter for Hybrid Fuel Cell Systems. IEEE Trans. Power
Electron. 2007, 22, 480–487. [CrossRef]

132. Tao, H.; Kotsopoulos, A.; Duarte, J.L.; Hendrix, M.A. Family of Multiport Bidirectional Dc–Dc Converters. IEE Proc.-Electr. Power
Appl. 2006, 153, 451–458. [CrossRef]

133. Tao, H.; Duarte, J.L.; Hendrix, M.A. Multiport Converters for Hybrid Power Sources. In Proceedings of the 2008 IEEE Power
Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008.

134. Liu, D.; Li, H.; Marlino, L.D. Design of a 6 Kw Multiple-Input Bi-Directional Dc-Dc Converter with Decoupled Current Sharing
Control for Hybrid Energy Storage Elements. In Proceedings of the APEC 07-Twenty-Second Annual IEEE Applied Power
Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007.

135. Wen, G.; Chen, Y.; Kang, Y. A Family of Cost-Efficient Integrated Single-Switch Three-Port Converters. In Proceedings of the 2013
Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21 March 2013.

136. Parthiban, R.; Rajambal, K. Performance Investigation of Three-Port Converter for Hybrid Energy Systems. In Proceedings of the
2014 IEEE 2nd International Conference on Electrical Energy Systems (ICEES), Chennai, India, 7–9 January 2014.

137. Sun, X.; Liu, F.; Xiong, L.; Wang, B. Research on Dual Buck/Boost Integrated Three-Port Bidirectional Dc/Dc Converter. In
Proceedings of the 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific), Beijing, China,
31 August–3 September 2014.

138. Yang, S.; Bryant, A.; Mawby, P.; Xiang, D.; Ran, L.; Tavner, P. An Industry-Based Survey of Reliability in Power Electronic
Converters. IEEE Trans. Ind. Appl. 2011, 47, 1441–1451. [CrossRef]

139. Li, W.; He, X. Review of Nonisolated High-Step-up Dc/Dc Converters in Photovoltaic Grid-Connected Applications. IEEE Trans.
Ind. Electron. 2010, 58, 1239–1250. [CrossRef]

140. Zhao, C.; Round, S.D.; Kolar, J.W. An Isolated Three-Port Bidirectional Dc-Dc Converter with Decoupled Power Flow Management.
IEEE Trans. Power Electron. 2008, 23, 2443–2453. [CrossRef]

141. Oggier, G.G.; Botalla, L.P.; García, G.O. Soft-Switching Analysis for Three-Port Bidirectional Dc-Dc Converters. In Proceedings of the
2010 9th IEEE/IAS International Conference on Industry Applications-INDUSCON 2010, São Paulo, Brazil, 8–10 November 2010.

142. Piris-Botalla, L.; Oggier, G.G.; Airabella, A.M.; García, G.O. Analysis and Evaluation of Power Switch Losses for Three-Port
Bidirectional Dc-Dc Converter. In Proceedings of the 2012 IEEE International Conference on Industrial Technology, Athens,
Greece, 19–21 March 2012.

143. Piris-Botalla, L.; Oggier, G.G.; Airabella, A.M.; García, G.O. Power Losses Evaluation of a Bidirectional Three-Port Dc–Dc
Converter for Hybrid Electric System. Int. J. Electr. Power Energy Syst. 2014, 58, 1–8. [CrossRef]

144. Phattanasak, M.; Gavagsaz-Ghoachani, R.; Martin, J.-P.; Nahid-Mobarakeh, B.; Pierfederici, S.; Davat, B. Control of a Hybrid
Energy Source Comprising a Fuel Cell and Two Storage Devices Using Isolated Three-Port Bidirectional Dc–Dc Converters. IEEE
Trans. Ind. Appl. 2014, 51, 491–497. [CrossRef]

145. Krishnaswami, H.; Mohan, N. Three-Port Series-Resonant Dc–Dc Converter to Interface Renewable Energy Sources with
Bidirectional Load and Energy Storage Ports. IEEE Trans. Power Electron. 2009, 24, 2289–2297. [CrossRef]

146. Wang, L.; Wang, Z.; Li, H. Asymmetrical Duty Cycle Control and Decoupled Power Flow Design of a Three-Port Bidirectional
Dc-Dc Converter for Fuel Cell Vehicle Application. IEEE Trans. Power Electron. 2011, 27, 891–904. [CrossRef]

147. Wang, H.; Zhou, D.; Blaabjerg, F. A Reliability-Oriented Design Method for Power Electronic Converters. In Proceedings of the
2013 Twenty-Eighth Annual IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA, 17–21
March 2013.

148. Kumaravel, S.; Achathuparambil Narayanankutty, R.; Rao, V.S.; Sankar, A. Dual Input-Dual Output Dc-Dc Converter for Solar
Pv/Battery/Ultra-Capacitor Powered Electric Vehicle Application. IET Power Electron. 2019, 12, 3351–3358. [CrossRef]

https://doi.org/10.1109/TPEL.2011.2125991
https://doi.org/10.1109/TPEL.2006.889928
https://doi.org/10.1049/ip-epa:20050362
https://doi.org/10.1109/TIA.2011.2124436
https://doi.org/10.1109/TIE.2010.2049715
https://doi.org/10.1109/TPEL.2008.2002056
https://doi.org/10.1016/j.ijepes.2013.12.021
https://doi.org/10.1109/TIA.2014.2336975
https://doi.org/10.1109/TPEL.2009.2022756
https://doi.org/10.1109/TPEL.2011.2160405
https://doi.org/10.1049/iet-pel.2019.0123


Energies 2024, 17, 1575 37 of 37

149. Rooholahi, B.; Siwakoti, Y.P.; Eckel, H.-G.; Blaabjerg, F.; Bahman, A.S. Enhanced Single-Inductor Single-Input Dual-Output Dc–Dc
Converter with Voltage Balancing Capability. IEEE Trans. Ind. Electron. 2023. [CrossRef]

150. Zhu, B.; Chen, S.; Zhang, Y.; Huang, Y. An Interleaved Zero-Voltage Zero-Current Switching High Step-up Dc-Dc Converter.
IEEE Access 2020, 9, 5563–5572. [CrossRef]

151. Liu, Y.; Liu, X.; Li, X.; Yuan, H.; Xue, Y. Model Predictive Control-Based Dual-Mode Operation of an Energy-Stored Quasi-Z-Source
Photovoltaic Power System. IEEE Trans. Ind. Electron. 2022, 70, 9169–9180. [CrossRef]

152. Shanmugam, S.; Sharmila, A. Multiport Converters for Incorporating Solar Photovoltaic System with Battery Storage: A Pilot
Survey Towards Modern Influences, Challenges and Future Scenarios. Front. Energy Res. 2022, 10, 947424. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TIE.2023.3301527
https://doi.org/10.1109/ACCESS.2020.3048387
https://doi.org/10.1109/TIE.2022.3215451
https://doi.org/10.3389/fenrg.2022.947424

	Introduction 
	Classification of Bidirectional DC-DC Converters 
	Non-Isolated Bidirectional (NIB) DC-to-DC Converter 
	Isolated Bidirectional (IB) DC-DC Converter 

	Bidirectional Improvements towards Bidirectional Multiport Converters 
	Multiport DC-DC Converters 
	The Fundamental Principles of Operation for a Three-Port DC-DC Converter 
	Non-Isolated Three-Port DC-DC Converters 
	Dual-Input–Single-Output DC-DC Converters (DISO) 
	Single-Input–Dual-Output DC-DC Converters (SIDO) 
	Single-Input–Single-Output Mode (SISO) 

	Partly Isolated Three-Port DC-DC Converters 
	Fully Isolated Three-Port DC-DC Converters 
	Multi-Input Total Bridge Converter (FBC) 
	Multi-Input Half-Bridge DC-DC Converters (HBCs) 
	Comparison of Three-Port Converters 


	Proposed Three-Port DC-DC Converter 
	Dual Input 
	Mode 1 
	Mode 2 
	Mode 3 

	Dual Output 
	Mode 4 
	Mode 5 
	Mode 6 

	Current Stress Equations 
	Voltage Stress Equations 
	Design of Passive Elements 
	Simulation and Experimental Results 
	Comparative Study 

	Discussion and Future Recommendations 
	Conclusions 
	References

