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Flood forecasting and management are one of the most important strategies necessary for 

water resource and decision planners in combating flood problems. The Muskingum 

model is one of the most popular and widely used applications for the purpose of 

predicting flood routing. The particle swarm optimization (PSO) methodology was used 

to estimate the coefficients of the nonlinear Muskingum model in this study, comparing 

the results with the methods of genetic algorithm (GA), harmony search (HS), least-

squares method (LSM), and Hook-Jeeves (HJ). The average monthly inflow for the Tigris 

River upstream at the Al-Mosul dam was selected as a case study for estimating the 

Muskingum model's parameters. The analytical and statistical results showed that the 

PSO method is the best application and corresponds to the results of the Muskingum 

model, followed by the genetic algorithm method, according to the following general 

descending sequence: PSO, GA, LSM, HJ, HS. The PSO method is characterized by its 

accurate results and does not require many assumptions and conditions for its application, 

which facilitates its use a lot in the subject of hydrology. Therefore, it is better to 

recommend further research in the use of this method in the implementation of future 

studies and applications. 
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1. INTRODUCTION

Floods have catastrophic social and economic consequences 

for the environment [1, 2], including the destruction of dams 

[3], the inundation of residential and industrial areas, the 

disruption of transportation networks [4], the damage to crops, 

and the destruction of agricultural areas [5]. As a result, flood 

forecasting and control is a critical concern of water policy-

makers and designers [6, 7]. Flood forecasts are made using 

hydrologic and hydraulic models. Flood routing is the process 

of estimating the downstream flood discharge hydrograph 

based on the upstream discharge hydrograph [8, 9]. Flood 

routing can be performed using hydraulic models based on 

numerical approaches, although it requires complex flow 

equations [10]. Hydrological models use the spatially 

aggregated continuity equation and storage equation to the 

routing of floods. These algorithms require only a small 

amount of data to predict floods [11]. The Muskingum Model 

is an outstanding hydrological model in flood management. 

This model has a number of parameters that must be obtained 

for accurate flood forecasting [12], and several versions of the 

model have been used to route flooding. The use of the 

optimization method is one of the options for calculating 

parameters as choice variables. The ability of evolutionary 

algorithms to solve optimization method problems is 

impressive. These algorithms are characterized by the 

adaptability, fast, and accuracy of their application [13]. As a 

result, evolutionary algorithms can be used to calculate those 

parameters [14]. A nonlinear Muskingum model with the 

lateral flow was used in flood routing [15]. 

Some optimization techniques, such as genetic algorithm 

(GA) [16] and harmony search (HS) [17] were used to 

calibrate the three parameters of Muskingum's model which 

are K, x, and m. The least-squares method (LSM) was also 

used to determine the parameters of Muskingum's nonlinear 

model [18]. The Hook-Jeeves pattern (HJ) in combination with 

linear regression (LR), conjugate gradient (CG), and David-

Fletcher-Powell (DFP) applications were also used to estimate 

these parameters [19, 20]. When comparing the performance 

of the method with the Gill's procedure, it was observed that 

HJ + CG and HJ + DFP gave better results. When most actual 

river systems have a nonlinear relationship between storage 

and discharge, the linear model may be inappropriate. All the 

previous methods do not represent the best method, and they 

may be limited and trapped at a certain point. The parameters 

of the model were estimated using GA [16]. The results 

revealed that the GA estimate was superior to earlier 

approaches and that the initial guess did not have to be close 

to the optimum. The HS was used to solve a similar problem 

[21, 22]. Their findings revealed that the HS estimate 

outperformed GA and did not necessitate an initial guess that 

was near to the optimum. In this study, the particle swarm 

optimization (PSO) [23, 24] methodology is used to estimate 

the parameters of the nonlinear Muskingum model in this 

study, then the results compared with GA, HS, LSM, and HJ. 

Also, the results were also confirmed by performing statistical 

analysis of three types of error measurement indices (SSD, 

ETP, and MARE) [25] used to evaluate the performance of 

each algorithm. Simulation results indicate that the proposed 

scheme can improve the accuracy of the Muskingum model 

International Journal of Design & Nature and Ecodynamics 
Vol. 16, No. 6, December, 2021, pp. 649-656 

Journal homepage: http://iieta.org/journals/ijdne 

649

https://crossmark.crossref.org/dialog/?doi=10.18280/ijdne.160605&domain=pdf


 

for flood routing. Figure 1 shows the steps of the optimal 

design procedure. 

 

 
 

Figure 1. Steps of the optimal design procedure [19] 

 

Considering the excellent performance of SOS in 

exploitation stage and the strong ability of other algorithms in 

exploring the solution space, we attempt to combine the 

advantages of these algorithms together. Moreover, the 

practical swarm is also taken into consideration to improve the 

efficiency. 

 

 

2. ALGORITHM OF THE NONLINEAR MUSKINGUM 

MODEL ROUTING 

 
The nonlinear storage and continuity equations presented 

below are often used in applications of the Muskingum model: 

 
𝑑𝑆

𝑑𝑡
= 𝐼 − 𝑄 (1) 

 

𝑆 = 𝐾[𝑋𝐼 + (1 − 𝑋)𝑄] (2) 

 

The rate of outflow can be written as follows: 

 

Qi = {1/1-x} {Si/k}m-1 - {x/1-x}Ii (3) 

 

From Eq. (1) and (3), the results of combination: 

 

Qi = {1/1-x} {Si/k}m-1 + {1/1-x}Ii (4) 

 

Si+1= Si +∆Si (5) 

 

Qi+1 = {1/1-x} {Si+1/k}m-1- {x/1-x}I- i +1 (6) 

 

where: I-
i+1 = (Ii+1+Ii)/2. 

 

The steps of the routing procedure are as follows [14, 18]: 

● Suppose values for the three parameters: K, X, and m. 

● Use Eq. (2) to calculate storage (S) when the initial 

outflow equals the initial inflow. 

● Use Eq. (4) to calculate the time rate of storage volume 

change. 

● Use Eq. (5) to calculate the following accumulated 

storage. 

● Eq. (6) is used to determine the next outflow. 

(I- t+1) indicates the average inflow (It+1+It /2). When the 

storage ratio (t/t+1) is greater than 2, it is replaced by (It+1+It 

/2).  

 

● To obtain the Subsequent outgoing outflow, the steps 

above should be repeated.  

 

 

3. OPTIMIZATION PROCEDURE  

 

3.1 Particle Swarm Optimization (PSO) 

 

The PSO is used to estimate parameters for the nonlinear 

Muskingum model in this study. Particles in a PSO system 

move around in a multidimensional search space. During the 

movement, each particle adjusts its position based on its own 

experience and the experience of a neighboring particle, 

utilizing the best position encountered by itself and its 

neighbor [23, 24, 26, 27].  

The Objective function is written as follows: A current ith 

particle position in the multidimensional search space that 

represents Yin at the nth iteration, a current's speed Vin is in 

charge of the movement's speed and direction. In Eq. (7), each 

particle's velocity update along each dimension to the local and 

global best positions, and in Eq. (8), each particle's position 

update [28]. 

 

Vi
n+1=Vi

n + c1r1(Pi-yi) + c2r2(Pj – yi
n) (7) 

 

Yi
n+1=yi + Vi

n+1 (8) 

 

where: 

Pi: the particle's best previous position.  

Pj: The particle with the best global position out of all the 

particles. 

c1 and c2 are acceleration parameters that each control how 

far the particle moves within a single iteration. 

r1 and r2 are coefficients taken from two uniform random 

numbers within the limits from 0 to 1. 

Eq. (9) and Eq. (10) are used to update and apply the best 

local values in the field. 

 
Pi ={Pi: f(yi) ≥ f(Pi)
 Pi ={Pi: f(yi) ˂ f(Pi)

} (9) 

 

Or 

 

Pj = min.[f(Pi)]     i= 1,2,3,……..,m (10) 

 

where: m is the total number of particles and f is the objective 

function. 

 

3.2 Genetic Algorithm (GA) 

 

In recent years, a slew of optimization strategies has 

evolved that use random search algorithms to simulate natural 

evolutionary processes. This type of approach could be 

utilized to solve optimization problems that aren't well suited 

to deterministic methods. Algorithms for problems with 

discontinuous non-differentiable, stochastic, or extremely 

nonlinear objective functions are included, and Genetic 

Algorithms are some of the algorithms that fall into this 

category [16, 29]. The first stage in a GA is to establish a 

random population, with each person having a unique fitness. 

A chromosome is a collection of genes that is coded in string 
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form for each individual.  

To provide a description of an individual in the population 

of interest, chromosome representation is required. After each 

chromosome has been decoded, the performance function is 

utilized to assess its fitness. Individuals who are more 

physically fit will be able to make a greater contribution to 

future generations [30]. Figure 2 shows the flowchart of GA.  

 

 
 

Figure 2. Flowchart of the Genetic Algorithm (GA) [30] 

 

The decoded value is obtained as follows [30]: 

 

Xdec= Xmin + Xbi (Xmax.- Xmin.)/2n-1 (11) 

 

The fitness value of each individual is determined by the 

following: 

 

F(xj) = 2 – P2 + {2(PZ-1)XJ}/m-1 (12) 

 

3.3 Harmony Search (HS) Algorithm  

 

The Harmony Search (HS) algorithm is a form of 

optimization in a variety of water resources engineering 

challenges as an optimization methodology, the following 

relation is the definition of the objective function [17, 21, 22]: 

 

Min. Z(X) Subject to xJ ϵ XJ ; XJL≤ ҲJ ≤ XJU  (13) 
 

where: 

(J =1,2, …., N). 

Z(X): the objective function. 

XJ: design variable. 

ҲJ: is the set of all possible values for each decision variable. 

xiL and xiU are the decision variable lower and upper 

bounds. 

N is the number of design variables. 

Figure 3 shows a flow chart of the procedure employed in 

operations. The method's major components are: collecting the 

relevant data (land use, river cross-section, inflows), and 

utilizing the HS algorithm to optimize the procedure. 

 
 

Figure 3. Flowchart of the harmony search algorithm (HS) 

[21, 22] 
 

3.4 Analytical procedures for regression analysis 
 

The researchers used multiple linear regression analysis to 

demonstrate the hydrological factors that best explain flood 

flow changes and to construct equations to predict flood flows. 

Figure 4 shows a flowchart of the regression analysis. In most 

cases, the regression equation is expressed as [12, 31]: 

 

y=ao+∑𝑚
𝑖=1 𝑎𝑖. 𝑥𝑖 + ∑𝑚

𝑖=1 𝑎𝑖𝑖. 𝑥2 +
∑𝑚

𝑖=1 ∑𝑚
𝑖=1 𝑎𝑖𝑗. 𝑥𝑖. 𝑥𝑗 + 𝜀  

(14) 

 

where: 

Y: the variable of response; 

X: factors of explanatory; 

a: regression coefficients. 
 

 
 

Figure 4. Flowchart of the multiple linear regression analysis 

[12, 31] 
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3.5 Hooks-Jeeves pattern search model (HJ) 

 

The pattern search approach iteratively generates a 

collection of search directions. The search directions should 

be established in such a way that they totally cover the search 

space. This necessitates at least N linearly distinct search 

directions in an N-dimensional issue. In a two-variable 

function, for example, it requires at least two search directions 

to move from one place to another. It is noticed that some 

groups of N search directions can reach the target faster (need 

a few iterations), while others may need more iterations. A 

mixture of exploratory moves and heuristic pattern moves is 

done iteratively in the Hooke-Jeeves approach. To locate the 

optimal point surrounding the present position, an exploratory 

move is made in the area of the present position in a 

methodical manner, Figure 5 shows the pattern move for the 

unidirectional approach [16, 17]. 

 

 
 

Figure 5. Pattern move for the unidirectional approach [16, 

17] 

 

3.5.1 Exploratory step  

Assume that (xc) represents the current solution (the starting 

point), assume that (A) has a negative impact on the variable 

(x percent); let j = 1 as well as x = xc. 

 

1. Estimate 

 

f = f (x), f + = f (xj + Δj) and f - = f (xj - Δj) (15) 

 

2. Determine f min = min (f, f +, f -). Set x corresponds to f 

min. 

3. Is j= N? If No: set j = j+ 1 and move to Step 1, or Yes: x 

becomes the required result and moves to Step 4. 

4. Repeat the successful moves, assume the new point as 

the new base point if it has a higher fitness, whatever 

happens, go back to step 2. 

5. Step length should be adjusted to the next smaller step. 

Continue from step 2 if there is a smaller step, otherwise, 

terminate. 

 

The current point is disturbed in positive and negative 

directions along with each variable one at a time throughout 

the exploratory motion, and the best point is recorded. At the 

conclusion of each variable perturbation, the current point is 

changed to the best point. In any instance, the result of the 

exploratory maneuvers is deemed to be the best spot [16, 17]. 

 

3.5.2 Pattern move 

Different A new point is discovered by leaping from the 

current best point xc in the direction of the previous best point 

a ‘1' and the current base point x(k), as follows: 

 

Xp (m+1) = x (m) + (x(m) - x(m-1)) (16) 

 

An iterative application of an exploratory move in the 

vicinity of the current location and a subsequent move using 

the pattern move make up the Hooke-Jeeves approach. The 

pattern move is not accepted if it does not take the solution to 

a better region, and the scope of the exploratory search is 

reduced [19, 20]. 

Figure 6 shows the flowchart for Hooks-Jeeves direct search, 

Table 1, indicate the complete algorithm of this model. 

 

Table 1. The complete algorithm of the Hooks-Jeeves pattern search model (HJ) 

 
Algorithmic Framework Hooke-Jeeves Pattern Search Algorithm Dimensional Local Search Algorithm 

1. Set the coordinates of the starting base 

point xt to be uniformly random. To 

construct a set of candidates, search the 

space in even intervals in each dimension. 

As the local search's foundation, choose 

the best candidate xt+1. 

 

2. Use one of the local search alternatives 

described in sections A and B to find 

anything nearby. Save the locally 

optimized solution xt+n if it isn't within a 

certain distance of any other solution. 

 

3 Steps 1 and 2 should be repeated as long 

as the objective function remains the 

same. 

 

4. Reoptimize the stored solutions when a 

change occurs by using the appropriate 

local search. 

1. Obtain the xt starting base point. Set a range of 

step lengths. 

 

2. At a time, move the base point along each of the 

d dimensional axes . time and assess the outcome 

Adopt each new point if it improves on the 

previous one. the preceding point Proceed to step 

3 if any of the movements were successful. If there 

are none, was successful, go on to number four. 

 

3. In a combined pattern move, repeat the 

successful moves. Assume the new point as the 

new base point if it has a higher fitness. Whatever 

happens, go back to step 2. 

 

4. Step length should be adjusted to the next 

smaller step. If there's a smaller step, take it . 

continue from the second. If this is not the case, the 

process should be ended. 

1. Obtain the xt starting base point. Set a 

range of step lengths. 

 

2. Sequence through the dimensions by 

moving the base point along one of the d 

dimensional axes at a time. Examine the 

outcome. Adopt the new coordinates and 

repeat in the next dimension if the fitness is 

better than the prior solution. 

 

3. Change the step length. If there are no 

further steps, end the process. If there are 

further stages, go to step 2. 
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Figure 6. Flowchart of the Hooks-Jeeves pattern search 

model (HJ) [19, 20]  

 

3.6 Statistical analysis, error measurement indices  

 

In this study, the index sum of squared deviations (SSD) 

was used as the objective function. The total discrepancies 

between observed and actual discharges are calculated by 

using the following equation [7, 8, 25]: 

 

Min. SSD= ∑𝑚
𝑖=1 |𝑄𝑜𝑏𝑜 − 𝑄𝑒𝑠𝑜| (17) 

 

where: 

Qobo = observed outflow (m3/s); 

Qeso = simulated outflow (m3/s). 

 

ETP (Error of Time to Peak): The ETP index calculates the 

difference between projected and observed discharge time 

discrepancies: 

 

ETP = (TPO – TPC) (18) 

 

where:  

TPO = time peak of observed outflow hydrograph; 

TPC = time peak of routed outflow hydrograph. 

 

The mean of the relative error between observed and routed 

outflows is called the mean absolute relative error (MARE): 

 

MARE = 
1

𝑚
∑𝑚

𝑗=1  
|𝑄𝑜𝑏𝑠.−𝑄𝑟𝑜𝑢.|

𝑄𝑜𝑏𝑠.
 (19) 

 

where:  

Qobs. = observed outflow; 

Qrou. = routed outflow; 

m= number of data. 

 

 

4. STUDY AREA 

 

The length of the Tigris River is 1,750 km, and it starts from 

the Taurus Mountains in eastern Turkey, about 25 km 

southeast of Elazig and about 30 km from the headwaters of 

the Euphrates River. The river then passes through 

southeastern Turkey for a distance of 400 km until it reaches 

the Syrian-Turkish border. The only part of the river that runs 

through Syria is 44 km long. The Tigris River enters the Iraqi 

territory from the north, and its flow continues towards the 

south of the country, and during the distance of flow of more 

than 1,200 km, a number of tributaries coming from Iranian 

lands pour into it. The main channel of the river continues 

south until the Tigris River joins the Euphrates River in the 

Qurna region to form the Shatt al-Arab. The region of the 

Tigris River, located at its entrance from the northern region 

of the country, and the extension of its course to the upstream 

course of the Mosul Dam, was selected as a case study. This 

area has regular hydrological and hydrological characteristics, 

in addition to the absence of major tributaries entering or 

leaving the river [32]. Figure 7 shows the layout of the study 

area.  

 

 
 

Figure 7. Layout of the study area [32] 

 

 

5. RESULTS ANALYSIS AND DISCUSSION  
 

It is difficult to estimate the nonlinear Muskingum model 

parameters through trial and error. Various approaches have 

been used to estimate these parameters throughout the last two 

decades. One of the strategies that have been successful in 

estimating these parameters is optimization approaches. The 

PSO method was utilized to estimate the three parameters of 

the nonlinear Muskingum model in this study. The 

performance of the PSO method was evaluated by comparing 

the results of its implementation with the results of applying 

different heuristic algorithms such as GA, HJ, LSM, HS, and 

exploring who is the best to find the optimal values of 

Muskingum's nonlinear parameters in guiding floods. The 

statistical indicators SSD, ETP, and MARE have been used to 

evaluate previous applications. 

The analytical results shown in Table 2 for the comparison 

between the observed values and the routed outflow values, as 

well as the results of the statistical analysis presented in Table 

3, showed that the results of the PSO method were the best, 

and the closest to the observed results, and this is what was 

observed in Figure 8. The descending sequence of the 

efficiency evaluation rate of the optimization methods in terms 

of their compatibility with the observed results was as follows: 

PSO, GA, LSM, HJ, and HS, according to the computed error 

index value for each method. 

Table 4 shows the values of Muskingum's nonlinear 

coefficients calculated using the optimization methods 

adopted in this study, where it was noted that the use of the 

PSO method is the best in calculating these coefficients 

compared to the results of other methods, and also in terms of 

their compatibility with the results of the Muskingum model. 

The descending sequence of the efficiency evaluation rate of 

the optimization methods was as follows: PSO, GA, LSM, HJ, 

HS.  
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Table 2. Observed and routed outflow for various methods  

 

Time (hr.) Inflow (cms) Observed Outflow (cms) 
Routed Outflow (cms) 

PSO GA HS LSM HJ 

0 144 122 112.0 131.0 130.8 126.9 131.0 

6 141 155 150.8 162.0 160.8 146.0 159.0 

12 204 210 189.3 221.5 230.7 217.0 214.0 

18 190 210 187.5 219.0 243.0 217.0 205.0 

24 192 214 190.0 223.0 232.7 220.6 217.0 

30 186 190 210.0 205.0 220.0 211.0 202.0 

36 170 177 188.6 187.0 190.0 180.4 180.5 

42 165 206 211.0 218.0 220.7 210.7 210.6 

48 135 160 176.0 178.0 190.6 171.0 168.0 

54 188 220 223.0 201.0 254.6 211.0 223.0 

60 254 210 221.4 219.0 232.0 216.0 215.0 

66 430 400 410.0 421.0 433.6 411.0 412.0 

72 705 710 700.9 718.0 732.8 700.8 720.0 

78 1010 720 712.0 716.0 741.0 705.0 731.0 

84 1190 755 733.2 740.8 720.0 751.0 760.0 

90 700 700 700.0 721.0 732.0 709.0 703.0 

96 410 720 719.7 712.0 741.7 714.0 717.0 

102 220 750 730.0 870.0 763.0 755.0 745.0 

108 210 890 880.2 865.0 870.0 885.0 884.9 

114 189 880 895.0 854.8 840.0 840.0 879.0 

120 156 510 512.0 541.0 540.2 501.0 503.0 

126 150 290 287.9 220.0 310.0 280.0 203.3 

132 135 210 201.0 218.0 221.0 206.8 211.0 

138 144 190 194.0 188.6 210.0 185.7 185.0 

144 110 180 190.0 185.5 202.7 179.0 175.0 

150 95 154 161.0 154.7 160.0 154.5 150.0 

156 88 130 127.0 131.0 143.0 132.0 132.0 

162 80 120 121.0 124.0 136.0 123.0 116.0 

168 77 115 117.9 118.0 125.0 113.0 112.0 

174 70 110 116.0 114.0 122.0 112.0 107.0 

180 65 112 115.0 116.0 123.0 115.0 110.5 

186 60 110 112.0 113.0 122.0 116.0 106.0 

192 55 104 106.0 102.0 121.0 102.0 100.0 

198 50 100 101.0 103.0 112.0 102.0 98.6 
 

Table 3. Computed error index value for each method  
 

Statistical method PSO GA HS LSM HJ 

SSD 3122150 3155210 3564512 3136561 3463312 

ETP 1 2 5 2 3 

MARE 0.060 0.084 0.360 0.086 0.284 
 

Table 4. Computed nonlinear Muskingum parameters 

 
Muskingum parameters Muskingum PSO GA HS LSM HJ 

K 0.191 0.190 0.180 0.070 0.175 0.091 

X 0.352 0.350 0.311 0.270 0.321 0.310 

m 2.153 2.131 1.990 2.560 2.330 2.540 

 

 
 

Figure 8. Simulated outflow hydrograph for Tigris River 

By analyzing the results of the general evaluation process 

for the efficiency of the optimization methods and comparing 

them with the results of applying the Muskingum model, it can 

be said that the Particle Swarm Optimization (PSO) method is 

the best, followed by the Genetic Algorithm (GA) method, and 

then the rest of the other improvement methods.  

 

 

6. CONCLUSIONS AND RECOMMENDATIONS  

 

In this study, different optimization methods were used in 

calculating and analyzing the results of the routed outflow 

within the study area in the Tigris River and comparing them 

with the results of applying the Muskingum model and 

calculating its parameters.  

The analytical and statistical results showed that the PSO 
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method is the best application and corresponds to the results 

of the Muskingum model, followed by the GA method, 

according to the following general descending sequence: PSO, 

GA, LSM, HJ, HS.  

The advantage of the PSO method over other optimization 

methods is not only in its accurate results but also in the 

requirements for its application since it does not require many 

assumptions and conditions. From the above, it appears that 

the PSO method has a lot of potential in the topic of hydrology, 

which we recommend further research and implementation of 

future applications and studies. 

Due to its excellent accuracy and simplicity, the 

Muskingum model is a valuable and essential hydrological 

model. Hydrological models can be completed after 

calculating parameter values; however, hydraulic models are 

necessary to simulate complicated boundary hydraulic 

conditions, which increases computing time. PSO has the 

benefit of not requiring the starting values of the model 

parameters to be assumed. The findings show that PSO can 

estimate the three parameters with a high degree of accuracy, 

resulting in accurate outflow forecasts. As a result, the model 

is also capable of anticipating outflow. No derivative is 

necessary with the PSO technique. PSO looks to have a lot of 

potential in the subject of hydrology, and further applications 

should be investigated. 
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