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A B S T R A C T 

Our goal in this paper is to find a new transformation technique for solving linear difference 

equations, as in the case of Z-transformation. And we were able to find the binomial transform, and 

this transform is one of the most common transformations. The linear difference equations can be 

solved by the binomial transformation. 
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1. Introduction and main result. 

The binomial transformation is useful in many applications, whether in applied or pure 

mathematics.The generalization of a binomial transformation was first introduced by Prodinger (1994). 

The binomial transformation is a discrete transformation of one series to another with many interesting 

applications incombinations and analysis. This transformation is useful for researchers interested in 

numerical aggregation, special numbers, and classical analysis. The binomial transform is closely 

related to the Euler transform. The binomial transformation is usually used to speed up the series or, in 
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the opposite direction, to simplify the structure of the hypergeometric terms of a series. This 

conversion has the elegant property that it is self-inverse. This conversion is one of the most common 

transfers. For more information about this conversion, see [8,9,10,11,12,13,14,15,16,17].  

Difference equations in the form of recurring relations/series appeared in 1718 at the latest (before that 

time they were usually shown in an indirect or descriptive manner). de Moivre's methods were further 

organized and studied by Euler. Later in 1759 Lagrange studied the "integration" (i.e. solvability) of 

linear difference equations by modifying methods that had been used in the study of differential 

equations and essentially laid the foundation for further investigations. and are the discrete equivalent 

of differential equations and arises whenever an independent variable can have only discrete values. 

The Difference equations are used in situations of real life, in various sciences (population models, 

genetics, psychology, economics, sociology, stochastic time series, combinatorial analysis, queuing 

problems, number theory, geometry, radiation quanta and electrical networks).see [2,3,4,5,6,7]. 

Linear difference equations play an important role in various fields of science and engineering. 

Significant progress has been made in recent years in the theory of linear difference equations. 

Previously, the development of this topic was far behind the related field of linear differential, as a 

return to some fundamental difficulties that called for the introduction of new ideas and methods. The 

first of this new idea was the representation of affinity, which Poincaré developed and applied in 1885 

to study distinction quotations [1].  About 1910 effective methods of  attack were  devised almost 

simultaneously by Norlund in Denmark, Carmichael and Berkoff in that country, and Dalbrun in 

France. These four mathematicians  all succeeded in proving in different ways the existence of 

analytical solutions of linear homogeneous  difference equations and studying their properties. In this 

paper we use the Binomial transformation to solve linear difference equations. This paper consists of 

several sections, the first section includes the introduction, the second section contains Binomial 

transform , the third section includes technic the solution of difference equation by Binomial 

Transform and the four section includes "applications". 

 

2. Binomial transform 

The binomial transform takes the sequence 𝑎0, 𝑎1, 𝑎2, … to the sequence 𝑏0, 𝑏1, 𝑏2, …via the 

transformation 

𝑏𝑛 = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑎𝑛 

The inverse transform is 

𝑎𝑛 = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑏𝑛 

 

 Where                                   (
𝑛
𝑘

) = 0 𝑖𝑓 𝑘 < 0.                       

Now we define the binomial transform of difference equations 
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Given a sequence {𝑦𝑘}, 𝑘 = 0,1,2, …, its binomial transform is the new sequence 

{𝐵(𝑦𝑛)},   𝑛 = 0,1,2 …  

Generated by the formula 

𝐵(𝑦𝑛) ≡ 𝑏(𝑦𝑛) = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑦𝑘           

But the inverse binomial transform we define 

𝑦𝑛 = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝐵(𝑦𝑛) 

A Table of Properties of  Binomial Transform 

                𝑦𝑘 𝐵(𝑦𝑛) 

1. 𝑦𝑘 = 1 
𝐵(𝑦𝑛) = ∑ (

𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−11

= (
𝑛
1

) (−1)0

+ (
𝑛
2

) (−1)1

+ (
𝑛
3

) (−1)2 + ⋯ 

= 𝑛 −
𝑛(𝑛 − 1)

2!
+

𝑛(𝑛 − 1)(𝑛 − 2)

3!
+ ⋯ 

 

2. 𝑦𝑘 = 𝑎𝑘 
𝐵(𝑦𝑛) = ∑ (

𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑎𝑘

= (
𝑛
1

) (−1)0𝑎1

+ (
𝑛
2

) (−1)1𝑎2

+ (
𝑛
3

) (−1)2𝑎3 + ⋯ 

= 𝑛𝑎1 − 𝑎2
𝑛(𝑛 − 1)

2!
+ 𝑎3

𝑛(𝑛 − 1)(𝑛 − 2)

3!
+ ⋯ 

3. 𝑦𝑘 = 𝑘 
𝐵(𝑦𝑛) = ∑ (

𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑘

= (
𝑛
1

) (−1)01

+ (
𝑛
2

) (−1)12

+ (
𝑛
3

) (−1)23 + ⋯ 

= 𝑛 − 2
𝑛(𝑛 − 1)

2!
+ 3

𝑛(𝑛 − 1)(𝑛 − 2)

3!
+ ⋯ 

= 𝑛 − 𝑛(𝑛 − 1) + ⋯ 
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4. 𝑦𝑘+1 
𝐵(𝑦𝑛+1) = ∑ (

𝑛
𝑘 + 1

)

𝑛

𝑘=1

(−1)𝑘𝑦𝑘+1

= (
𝑛
2

) (−1)1𝑦2

+ (
𝑛
3

) (−1)2𝑦3 + ⋯ 

 

 

4. 𝑦𝑘+2 
𝐵(𝑦𝑛+2) = ∑ (

𝑛
𝑘 + 2

)

𝑛

𝑘=1

(−1)𝑘+1𝑦𝑘+2

= (
𝑛
3

) (−1)2𝑦3 + ⋯ 

 

5. 𝑦𝑘−1 
𝐵(𝑦𝑛−1) = ∑ (

𝑛
𝑘 − 1

)

𝑛

𝑘=1

(−1)𝑘−2𝑦𝑘−1

= (
𝑛
0

) (−1)−1𝑦0

+ (
𝑛
1

) (−1)0𝑦1 + ⋯ 

 

6. 𝑦𝑘−2 
𝐵(𝑦𝑛−2) = ∑ (

𝑛
𝑘 − 2

)

𝑛

𝑘=1

(−1)𝑘−3𝑦𝑘−2

= (
𝑛

−1
) (−1)−2𝑦−1

+ (
𝑛
0

) (−1)−1𝑦0 + ⋯ 

 

 

3. Technic The Solution Of Difference Equation By Binomial Transform 

Let  

𝑦𝑘+𝑚 + 𝑎1𝑦𝑘+𝑚−1 + ⋯ + 𝑎𝑚𝑦𝑘 = 0           (1) 

Be an mth-order linear homogeneous difference equations with given constant coefficients 

𝑎1, 𝑎2, … , 𝑎𝑚 and having 𝑎𝑚 ≠ 0.  
 

To solve difference equations by binomial transformation 

We will take the binomial transformation of both sides of the equation (1). 

According to homogeneous boundary conditions 

𝐵(𝑦𝑛+𝑚) + 𝑎1𝐵(𝑦𝑛+𝑚−1) + ⋯ + 𝑎𝑚𝐵(𝑦𝑛) = 0 

And the solution method is as follows: 

𝐵(𝑦𝑛+𝑚) = ∑ (
𝑛

𝑘 + 𝑚
)

𝑛

𝑘=1

(−1)𝑘−1+𝑚𝑦𝑘+𝑚

= (
𝑛

1 + 𝑚
) (−1)𝑚𝑦1+𝑚 + (

𝑛
2 + 𝑚

) (−1)1+𝑚𝑦2+𝑚 + (
𝑛

3 + 𝑚
) (−1)2+𝑚𝑦3+𝑚 + ⋯ 
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𝐵(𝑦𝑛+𝑚−1) = ∑ (
𝑛

𝑘 + 𝑚 − 1
)

𝑛

𝑘=1

(−1)𝑘−2+𝑚𝑦𝑘+𝑚−1

= (
𝑛

1 + 𝑚 − 1
) (−1)−1+𝑚𝑦1+𝑚−1 + (

𝑛
2 + 𝑚 − 1

) (−1)𝑚𝑦2+𝑚−1

+ (
𝑛

3 + 𝑚 − 1
) (−1)1+𝑚𝑦3+𝑚−1 + ⋯ 

𝐵(𝑦𝑛) = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑦𝑘 = (
𝑛
1

) (−1)0𝑦1 + (
𝑛
2

) (−1)1𝑦2 + (
𝑛
3

) (−1)2𝑦3 + ⋯ 

the following examples illustrate the application of the above technique. 

4. Applications 

Example (1) solve the first order difference equation by The binomial transform 

𝑦𝑘+1 − 𝑦𝑘 = 0        (1), 

 with initial boundary   

𝑦(0) = 1,    𝑦(1) = 1,   𝑦(2) = 1 

Now, we will take the binomial transform of both sides of the equation (1) 

𝑏(𝑦𝑛+1) − 𝑏(𝑦𝑛) = 0 

Where 𝐵(𝑦𝑛) ≡ 𝑏(𝑦𝑛+1) − 𝑏(𝑦𝑛) 

 

𝑏(𝑦𝑛+1) = ∑ (
𝑛

𝑘 + 1
)

𝑛

𝑘=0

(−1)𝑘𝑦𝑘+1 = (
𝑛
1

) (−1)0𝑦1 + (
𝑛
2

) (−1)1𝑦2 + (
𝑛
3

) (−1)2𝑦3 + ⋯ 

= 𝑛 −
𝑛(𝑛 − 1)

2!
+

𝑛(𝑛 − 1)(𝑛 − 2)

3!
+ ⋯ 

= 𝑛 −
𝑛2

2!
+

𝑛

2!
+

𝑛3

3!
−

𝑛2

2
+

2𝑛

3!
+ ⋯ 

=
11

6
𝑛 − 𝑛2 +

𝑛3

3!
+ ⋯ 

𝑏(𝑦𝑛) = ∑ (
𝑛
𝑘

)

𝑛

𝑘=0

(−1)𝑘−1𝑦𝑘    

= (
𝑛
0

) (−1)−1𝑦0 + (
𝑛
1

) (−1)0𝑦1 + (
𝑛
2

) (−1)1𝑦2 + (
𝑛
3

) (−1)2𝑦3 + ⋯       

= −1 + 𝑛 −
𝑛(𝑛 − 1)

2!
+

𝑛(𝑛 − 1)(𝑛 − 2)

3!
+ ⋯ 

= −1 +
11

6
𝑛 − 𝑛2 +

𝑛3

3!
+ ⋯ 
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𝐵(𝑦𝑛) ≡ 𝑏(𝑦𝑛+1) − 𝑏(𝑦𝑛) = 0 

[
11

6
𝑛 − 𝑛2 +

𝑛3

3!
+ ⋯ ] − [−1 +

11

6
𝑛 − 𝑛2 +

𝑛3

3!
+ ⋯ ] = 1 

∴  𝐵(𝑦𝑛) = 1           (2) 

 

Now, we will taking the inverse (2) 

𝑦𝑛 = ∑ (
𝑛
𝑘

)

𝑛

𝑘=0

(−1)𝑘−1𝐵(𝑦𝑛) 

𝑦𝑛 = ∑ (
𝑛
𝑘

)

𝑛

𝑘=0

(−1)𝑘−11 = (
𝑛
0

) (−1)−1 + (
𝑛
1

) (−1)0 + (
𝑛
2

) (−1)1 + (
𝑛
3

) (−1)2 + ⋯ 

= −1 + 𝑛 −
𝑛(𝑛 − 1)

2!
+

𝑛(𝑛 − 1)(𝑛 − 2)

3!
+ ⋯ 

= −1 +
11

6
𝑛 − 𝑛2 +

𝑛3

3!
+ ⋯ 

∴ 𝑦𝑛 = 1 

 

Example (2) solve the second order difference equation by The binomial transform 

𝑦𝑘+2 − 𝑦𝑘 = 0        (1), 
 with initial boundary 

   𝑦(0) = 2,    𝑦(1) = 0,  
  𝑦(2) = 2 , 𝑦(3) = 0,    𝑦(4) = 2 

Now, we will take the binomial transform of both sides of the equation (1) 

𝐵(𝑦𝑛) ≡ 𝑏(𝑦𝑛+2) − 𝑏(𝑦𝑛) = 0 

𝑏(𝑦𝑛+2) = ∑ (
𝑛

𝑘 + 2
)

𝑛

𝑘=1

(−1)𝑘+1𝑦𝑘+2 = (
𝑛
3

) (−1)2𝑦3 + (
𝑛
4

) (−1)3𝑦4 + ⋯ 

= 0 −
2𝑛(𝑛 − 1)(𝑛 − 2)(𝑛 − 3)

4!
+ ⋯ 

= −
𝑛4

12
+

𝑛3

2
− 11

𝑛2

12
+

𝑛

2
+ ⋯ 

 

 

 

 

𝑏(𝑦𝑛) = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑦𝑘 = (
𝑛
1

) (−1)0𝑦1 + (
𝑛
2

) (−1)1𝑦2 + ⋯ 

= 0 − 𝑛(𝑛 − 1) + ⋯ 

= −𝑛2 + 𝑛 + ⋯ 

𝑏(𝑦𝑛+2) − 𝑏(𝑦𝑛) = 0 
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𝐵(𝑦𝑛) = [−
𝑛4

12
+

𝑛3

2
− 11

𝑛2

12
+

𝑛

2
+ ⋯ ] − [−𝑛2 + 𝑛 + ⋯ ] 

∴ 𝐵(𝑦𝑛) =
−1

2
𝑛 +

1

12
𝑛2 −

1

12
𝑛4 +

1

2
𝑛3 + ⋯     (2) 

Now, we will taking the inverse (2) 

𝑦𝑛 = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝐵(𝑦𝑛) 

𝑦𝑛 = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1 [
−1

2
𝑛 +

1

12
𝑛2 −

1

12
𝑛4 +

1

2
𝑛3 + ⋯ ] 

= (
𝑛
1

) (−1)0 [
−1

2
+

1

12
−

1

12
+

1

2
+ ⋯ ] + (

𝑛
2

) (−1)1 [−1 +
1

3
−

4

3
+ 4 + ⋯ ] 

= −𝑛2 + 𝑛 + ⋯ 

∴ 𝑦𝑛 = 1 + (−1)𝑛. 
 

Since  the binomial transformation of [1 + (−1)𝑛] is 

= ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1[1 + (−1)𝑛]    = (
𝑛
1

) (−1)00 + (
𝑛
2

) (−1)12 + ⋯  

                       = −
2

2!
𝑛(𝑛 − 1) + ⋯ 

              = −𝑛2 + 𝑛 + ⋯ 

 

Example (3) solve the first order difference equation by The binomial transform 

𝑦𝑘 − 3𝑦𝑘−1 = 0        (1), 
 with initial boundary   
𝑦(0) = 1,    𝑦(1) = 3,   
𝑦(2) = 9 , 𝑦(3) = 27,    
Now, we will take the binomial transform of both sides of the equation (1) 

𝐵(𝑦𝑛) ≡ 𝑏(𝑦𝑛) − 3𝑏(𝑦𝑛−1) = 0 

𝑏(𝑦𝑛) = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑦𝑘 = (
𝑛
1

) (−1)0𝑦1 + (
𝑛
2

) (−1)1𝑦2 + ⋯ 

= 3𝑛 −
9

2
𝑛(𝑛 − 1) + ⋯ 

 

𝑏(𝑦𝑛−1) = ∑ (
𝑛

𝑘 − 1
)

𝑛

𝑘=1

(−1)𝑘−2𝑦𝑘−1 = (
𝑛
0

) (−1)−1𝑦0 + (
𝑛
1

) (−1)0𝑦1 + ⋯ 

= −1 + 3𝑛                                                       
𝐵(𝑦𝑛) ≡ 𝑏(𝑦𝑛) − 3𝑏(𝑦𝑛−1)                                                       (2) 

                  = 3𝑛 − 3[−1 + 3𝑛] 
= −6𝑛 + 3                                                                  

Now, we will taking the inverse of the equation (2) 
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𝑦𝑛 = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘𝐵(𝑦𝑛) 

𝑦𝑛 = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘[−6𝑘 + 3] = (
𝑛
1

) (−1)1(−3) + (
𝑛
2

) (−1)2(−9) + ⋯ 

= 3𝑛 −
9

2
𝑛(𝑛 − 1) + ⋯ 

As compared to the binomial transformation of 𝑎𝑘 

𝑎𝑛 = 𝐵(𝑎𝑛) = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑎𝑘    = (
𝑛
1

) (−1)0𝑎1 + (
𝑛
2

) (−1)1𝑎2 + ⋯  

                       = 𝑎𝑛 −
𝑎2

2!
𝑛(𝑛 − 1) + ⋯ 

Since 𝑎 = 3 from equation (2) then we have 

 

∴ 𝑦𝑛 = 3𝑛 

 

Example (4) solve the first order difference equation by The binomial transform 

𝑦𝑘+1 − 2𝑦𝑘 = 0        (1), 
 with initial boundary   
𝑦(0) = 1,    𝑦(1) = 2,   𝑦(2) = 4 

Now, we will taking the binomial transform of 𝑦𝑘 of the equation (1) 

 

 

𝐵(𝑦𝑛) = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑦𝑘    = (
𝑛
1

) (−1)0𝑦1 + (
𝑛
2

) (−1)1𝑦2 + ⋯   

= 𝑛 −
4

2!
 𝑛(𝑛 − 1)        (2)  

As compared to the binomial transformation of 𝑎𝑘 

𝑎𝑛 = 𝐵(𝑎𝑛) = ∑ (
𝑛
𝑘

)

𝑛

𝑘=1

(−1)𝑘−1𝑎𝑘    = (
𝑛
1

) (−1)0𝑎1 + (
𝑛
2

) (−1)1𝑎2 + ⋯  

                       = 𝑎𝑛 −
𝑎2

2!
𝑛(𝑛 − 1) + ⋯ 

Since 𝑎 = 2 from equation (2) then we have 

∴ 𝑦𝑛 = 2𝑘    

 

Conclusion 

In this paper, a new method has been proposed to solve linear difference equations of first and second 

order homogeneous with initial conditions, and this method is a binomial transformation technique 

through which we were able to solve linear difference equations. 
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