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Abstract 
The aim of this paper is the effect of heat transfer on the oscillating flow of the 
hydrodynamics of magnetizing Eyring-Power fluid with variable viscosity 
through a porous medium for two kinds of geometries "Poiseuille flow and 
Couette flow". We used "perturbation technique" to obtain a clear formula for 
fluid motion. The results that obtained are illustrated by graphs. 

 
Keywords: Eyring-Powell fluid, MHD, Oscillatory flow, Variable viscosity, 
Porous medium. 

 
1. Introduction 

 
The concept of porous media is used in many fields of applied science and engineering: 
mechanics (acoustics, geo mechanics, soil mechanics, rock mechanics), engineering 
(petroleum engineering and construction engineering), geosciences (hydrography and 
petroleum geology). Geophysics, biophysics, materials science, etc.. 
We review some of the research that touched on the movement of the Powell- Eyring fluid in 
some channels. S. A. Gaffar, V. R. Prasad, E. K. Reddy (1), studies analyze the nonlinear, 
non-isothermal, magnetohydrodynamic (MHD) free convection boundary layer flow, heat 
and mass transfer of non-Newtonian Eyring–Powell fluid from a vertical surface in a non-
Darcy, homogenous porous medium, isotropic, in the presence of on slip currents and hall 
currents and on slip currents. S. O. Alharbi, A. Dawar, Z. Shah, W. Khan, M. Idrees, 
S. Islam and I. Khan (2), studies briefly examined the entropy generation in 
magnetohydrodynamic (MHD) Eyring–Powell fluid over an unsteady oscillating porous 
stretching sheet. M. Khan, M. Irfan, W.A.Khan, L. Ahmad (3), studies scrutinize the steady 
three-dimensional magnetohydrodynamics (MHD) flow of Powell-Eyring nanofluid with 
convective and the nanoparticles mass flux conditions. Additionally. H. A. Ogunseye, H. 
Mondal, P. Sibanda, H. Mambili (4), they checked the flow and heat transfer in the flow of 
the first nano-eric across the expansion surface using nano-conductivity viscosity models. W. 
Ibrahim and B. Hindebu (5), this study analyzed the MHD boundary layer flow of Eyring- 
Powell nanofluid past stretching cylinder with Cattaneo-Christov heat flux model. 
Wissam Sadiq K., Dheia G.S. Al-Khafajy (7), they studied the influence of heat transfer on 
magnetohydrodynamics (MHD) for the oscillatory flow of Williamson fluid with variable 
viscosity model through a porous medium channel. Dheia G.S. Al-Khafajy (8), studied the 
effect of heat-transfer on MHD oscillatory flow of Jeffrey fluid with variable viscosity model 
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through a porous medium. Dheia G.S. Al-Khafajy (9), study the radiation and mass transfer 
effects on MHD oscillatory flow for Jeffery fluid with variable viscosity through porous 
channel in the presence of chemical reaction. Al-Khatib and Wilson (10), the development of 
Poiseuille flow of the yield - stress fluid was discussed. Soundalgekar and Bhat (11), have 
investigated the MHD oscillatory flow of a Newtonian fluid in a Channel with heat transfer. 
M. Vidhya, N. Niranjana, A. Govindarajan (12) discussed the effect of two-dimensional 
unstable thermal flow during the movement of a dusty non-pressure liquid. 
This study aimed to analyze the mathematical model of the effects of heat transfer on the 
oscillating flow of the hydrodynamics of magnetizing Eyring-Power fluid with variable 
viscosity through a porous medium for two types of engineering conditions "Poiseuille flow 
and Couette flow". 
This research consists of six sections in the first section, which is the introduction, research 
on this topic shows. The second section includes the form of the flow channel with the 
formulation of the governing equations with boundaries conditions and the formula of the 
Eyring-Powell fluid equation. In the third section, we note the dimensionless transformations 
which helps us formulate the governing equations in a way that helps in solving them. 
Section four includes problem-solving and finding the formula for variable viscosity and 
velocity for two types of engineering conditions "Poiseuille flow and Couette flow". In the 
fifth and sixth sections, we discuss the results that we obtained through the illustrated graphs 
and review the most important observations that we reached. 

 
2. Mathematical Formulation 

consider the flow of an Eyring-Powell fluid in a porous medium of width h under the effects 
of the electrically applied magnetic field and radioactive heat transfer as depicted in Fig 1. 
Supposed that the fluid has very small electromagnetic force produced and the electrical 
conductivity is small. We are considering Cartesian coordinate system such that, ( ) 

is a velocity vector in which is the x-component of velocity and y is perpendicular to the x- 
axis. 

�0 

� 
 

 
 

x 
 
 
 

Fig 1 Channel format: (i) Poiseuille flow and (ii) Couette flow 
 

The basic equations governing for Eyring – Powell fluid are given by: 
The continuity equation is given by:    .                                                                 (1) 
The momentum equations are: 
In the direction:   , (2)    

In the direction:   ,                                 (3)  

The temperature equation:                                                                 (4) 

where  is the axial velocity,  is the density of the fluid,  is the pressure,  is the electrical 
conductivity,  is the strength of the magnetic field,  is the acceleration due to gravity,  is 
temperature,  is specific heat at constant pressure,  is the radiation heat flux, fluid 

T =  

T = �0 

�0 



1st International Virtual Conference on Pure Science

Journal of Physics: Conference Series 1664 (2020) 012031

IOP Publishing

doi:10.1088/1742-6596/1664/1/012031

3

 
 
 

viscosity dependent on temperature and  is thermal conductivity. 
The corresponding boundary conditions are given below: 

                                                          (5) 

The radioactive heat flux [6] is given by:         
                   (6) 

where  is the radiation absorption.  
The fundamental equation for Eyring – Powell fluid given by: 
 ,  
                                                                                      
where  is the pressure,  is the unit tensor,  is the extra stress tensor,  is the variable shear 
rate viscosity and  is the velocity gradient. We can write the component of extra stress tensor 
according to follows as: 

 ,                                     (7) 
 

3. Method of Solution 

The governing equations for non-dimensional conditions are: 

                                                         (8)  

where  is the mean flow velocity,  is Darcy number,  is Reynolds number,  is 
magnetic parameter,  is the Peclet number,  is the radiation parameter,  is Thermal 
Grashof number and  is the radiation parameter. 
Substituting equations (6) - (8) into equations (1) - (5), we have the following of 
nondimensional equations: 

,                                                                                                                              (9) 

,                                                                        (10) 

,                                                                                                                                     (11) 

,                                                                                                            (12) 

.                                                                                          (13) 
With the boundary conditions  

             (for Poiseuille flow)                                                                  (14) 
            (for Couette flow)                                                                    (15) 

                                                                                                                 (16) 
After simplifying the equation resulting from compensating the equation (13) into equation (10), 
we have:  

.                         (17) 
 

4. Solution of the Problem 
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4.1. Solution of the Heat Equations 
Using the separating variables method, assuming  for heat equation (12), 
where  is the frequency of oscillation with the boundary condition (16).  
The heat equation solution 

                                                                           (18) 
where  .  

4.2. Solution of the Motion Equation 
To solve the motion equation for two types flow “Poiseuille flow and Couette flow”. Let 

 ,                                                                                        (19) 

where  is a real constant and  is the frequency of the oscillation. 
The Reynold's model and variation of viscosity with temperature are defined as: 

.                                                      (20) 
By using the Maclaurin series, we get: 

                                                                                  (21) 
In this case, the viscosity is fixed at , by substituting Eq. (19) and Eq. (21) into Eq. (17), 
we get: 

  

          . (22) 

We assume a small value of  equation (22) is a non-linear differential equation and it is hard 
to find an exact solution, so will be used the perturbation technique to find the problem 
solution, as follows:    
  .                                                                                                        (23) 
 Substituting equation (23) into equation (22) with boundary conditions, then equating the like 
powers of , we have: 

  

   (24) 

4.2.1 Poiseuille flow 

The solution of the equation (24) for Poiseuille flow by using boundary condition (14) . 
I - Zeros-order system ( ) 

                                 (25) 

The associated boundary conditions are:        

II - First-order system ( )  
                (26) 

 The associated boundary conditions are:     

Equations (25) and (26) have been found by the expansion in terms of . We give some 
physical meaning to the problem by considering that when  is small and we use the 
perturbations series with parameters . We substitute for  ( for  ) by expansion  
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                                                                                      (27) 

and equating the coefficients of like powers in , then the following set of equations are 
obtained . 

(A) Approximation of Solution for    

By substituting equation (27) into equation (25),we get 

  

                                                                                

Equating the coefficients of like powers in , we obtain:  
- Zeros-Order System (((( ) 

                                                                            (28) 

The associated boundary conditions are:   

ii- First-Order System ( ) 

                                                (29)                         

The associated boundary conditions are:   

The perturbation solutions of the equations (28) and (29), with boundary conditions, are 

given   . 

(B) Approximation of Solution for    

By substituting for given by the expression equations (27) into equations (26), we get: 

  

                     . 

Equating the coefficients of like powers in , we obtain:  

i- Zeros-Order System ( ) 

=  .                                                   (30) 

The associated boundary conditions are:   

ii- First-Order System ( ) 

                   (31) 
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The associated boundary conditions are:  . 

The perturbation solutions of the equations(30) and (31), with boundary conditions, give is: 

.         

Finally, the perturbation solutions up to second term for  are given by  . We 
did not write the solution because it is very long. 

4.2.2 Couette flow 
The upper flake is locomotion and the lower flake is fixed with the velocity  boundary 
conditions for the Couette flow problem as problem defined   (0) = 0,  (1) =  
By the same previous method that we used to solve the equation and on the terms of the 
Poiseuille flow equation (17). The solution has been calculated by the perturbation technique 
and the results have been discussed during graphs. 
 

5. Results and Discussion 
 
We discuss the influence of heat transfer on MHD oscillatory flow for Eyring – Powell fluid 
through a porous medium with variable viscosity for two types of engineering conditions 
"Poiseuille flow and Couette flow" by using the graphical illustrations. We provide numerical 
assessments of analytical results and some of the graphically significant results are presented 
in figures (2-13). We used the (MATHEMATICA-12) program to find numerical results and 
illustrations. The velocity profile of the Poiseuille flow is shown in figures (2-7). Figure 2 
shows the velocity profile � decreases with the increasing Da and  . Figure 3 illustrates the 
influence of  and  on the velocity profiles function � vs. �. It is found that the velocity 
increasing with the increasing  while the velocity increases with the increasing . In figure 
4 the velocity profile � increases with the increasing of � and , respectively, while the 
velocity increasing with the increasing the parameters  and  in figure 5. Figure 6 illustrates 
the influence of  and  on the velocity profiles function � vs. �. It is found that the 
increasing of  the velocity decreases and the velocity decreases with the increasing of . We 
found that the velocity decreases with the increasing off  and in figures 7. The velocity 
profile of Couette flow is shown in figures (8-13). It is found that the velocity increases with 
increasing of the parameters , Pe, Re, �, M and  respectively, while the velocity decreases 
with the increasing Daaa , W and A. 
 

 

 
 
 

Fig 2: "Poiseuille flow" Velocity  profile  for  Da and  with  A = 0.1,  = 1, Re = 2,  = 0.5, � = 1, 
 = 0.7,  = 2,  = 1, t = 0. 5 . 
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Fig 3: "Poiseuille flow" Velocity  profile  for  and  with  =1, A = 0.1,  = 1, Re = 2,  = 0.5, � = 
1, Da = 0.8,  = 2,  = 1, t = 0. 5. 
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Fig 4: "Poiseuille flow" Velocity  profile  for  � and  with  =1, A = 0.1,  = 1,  = 0.5,  = 0.7, 
Da = 0.8,  = 2,  = 1, t = 0. 5 . 

 
 

 
Fig 5: "Poiseuille flow" Velocity  profile  for  and  with  =1, A = 0.1, Re = 2,  = 0.5, � = 1,  
= 0.7, Da = 0.8,  = 1, t = 0. 5, . 
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Fig 6: "Poiseuille flow" Velocity  profile  for  and  with  =1, M= 1, Re = 2, � = 1,  = 0.7,  Da = 
0.8, N=2,  = 1, t = 0. 5,  
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 Fig 7: "Poiseuille flow" Velocity  profile  for  and  with  =0.1, M= 1, Re = 2,  = 0.5, � = 1,  
= 0.7, Da = 0.8, N= 2, t = 0. 5, . 

 
 

 
 

Fig 8: "Couette flow" Velocity  profile  for  Da and  with  A = 0.1,  = 1, Re = 2,  = 0.5, � = 1,  
= 0.7,  = 2,  = 1, t = 0. 5 . 
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Fig 9: "Couette flow" Velocity  profile  for  and  with  =1, A = 0.1,  = 1, Re = 2,  = 0.5, � = 
1, Da = 0.8,  = 2,  = 1, t = 0. 5. 
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Fig 10: "Couette flow" Velocity  profile  for � and  with  =1, A = 0.1,  = 1,  = 0.5    = 0.7, 
Da = 0.8,  = 2,  = 1, t = 0. 5 . 

 

 

 
Fig 11: "Couette flow" Velocity  profile  for  and  with  =1, A = 0.1, Re = 2,  = 0.5, � = 1,  = 
0.7, Da = 0.8,  = 1, t = 0. 5, . 

 

 

 
Fig 12: "Couette flow" Velocity  profile  for  and  with  =1, M= 1, Re = 2, � = 1,  = 0.7, Da = 
0.8, N=2,  = 1, t = 0. 5, . 
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Fig 13: "Couette flow" Velocity  profile  for  and  with  =0.1, M= 1, Re = 2,  = 0.5, � = 1,  
= 0.7, Da = 0.8, N= 2, t = 0. 5, . 
 

6.  Concluding Remarks 
 

We discuss the influence of heat transfer on MHD oscillatory flow for Eyring-Powell fluid 
with variable viscosity through a porous medium. Using the perturbation technique we found 
the velocity. We used different values to find the results of pertinent parameters, namely 
Darcy number, Peclet number, Grashof number, magnetic parameter, the radiation parameter, 
the Schmidt number, the Soret number, the heat generation parameter frequency of the 
oscillation and Reynold number. we noted that in two types of flow "Poiseuille and Couette" 
the velocity increases with increasing of the parameters , Pe, Re, �, N and  respectively, 
while the velocity decreases with the increasing Daaaa , W and A. 
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