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ABSTRACT

Variable selection is an important topic in linear regression analysis. In practice, a large number of

predictors are usually introduced at the initial stage of model construction to mitigate potential model
biases. On the other hand, to enhance the ability to predict and select important variables.
The statisticians made great efforts in developing regularization procedures to solve the problems of
V.S. These actions automatically facilitate Variable selection (V.S) by setting specific coefficients to
zero and reducing coefficient estimates, providing useful estimates even if the model contains a large
number of variables. In this paper, two methods of regularization were proposed to estimate and select
the appropriate variables at the same time in the multiple regression model, which are the Standard
Error Adjusted Adaptive LASSO (SEA-LASSO) and Minim ax Concave Penalty (MCP) method and
selection of the best. The paper problem focuses on using the best regularization method that works on
estimation and appropriate selection of important variables at the same time and addressing the
problem of multiple linearity using the SEA-LASSO and MCP method. To get the real model.

This paper aims to evaluate the performance of the method (SEA-LASSO) and method (MCP) in
terms of the process of estimation and appropriate selection of important variables and treatment the
problem multicollinearity through the simulation study.

A simulation study was conducted to compare between these two methods, which included different
cases of the factors and testing the effect of the levels of these factors on the performance of these two
ways, as well as determining the value of the control parameter (1) and the criterion for selecting the
best value for it and the basis on which to evaluate the performance of the two methods. The simulation
results showed that (SEA-LASSO) method is superior to (MCP) method in terms of percentage of
operation to reach the real model measured by (PCT), and it is also better in terms of mean squares
error (MSE) because it achieves less (MSE) in most cases. A simulation study was used with the
program R.

Keywords:  Multiple regression model , Adjusted Adaptive LASSO (SEA-LASSO), Minimax
Concave Penalty (MCP)

1- Introduction

In some multiple regression applications, the number of predictors have become
large, which is why, the analysis of that data has become difficult. For the purpose of
dealing with this problem, it is necessary to perform dimensionality shrinkage of data
with a few assumptions. When talking about dimensionality reduction, it indicates the
fact that there are high dimensions, those dimensions have been referred to as the
variables or features. Increasing the number of these variables in the multiple
regression model, means that the model will be more difficult to analysis the data.
Thus, a problem will be encountered, known as the curse of dimensions where term
curse of dimensions was introduced by Bellman (1961) when data is sparse in multi-
dimensional spaces. Also in the case of linear correlation between the High-
dimensional data (HD). In which the greater the number of the variables makes it
more difficult predicting a certain quantity. Those variables might not be all
influential or effective, or can be interconnected and thereby, redundant which will
require reduction. Which is why, dimensionality reduction process means the
conversion of the (HD) into a space of a smaller size. It has a significant impact to
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solve this problem and by reducing the number of the random variables, in other
words, simplifying the understanding of the data only visually or numerically and thus
ensuring the integrity of data. Moreover, there are other advantages to the reduction of
dimensionality where it operates on data compression and reduces the time of the
calculations and there are some methods which do not operate efficiently in the cases
of very high dimensions (Lian, 2012). Thus, it is necessary to work on the reduction
of the dimension to obtain a simplified model. Therefore, the researchers suggested

many regulatory Methods that work on the estimation and selection appropriate of

important variables at the same time and treatment the problem multicollinearity,
among these methods are the Standard Error Adjusted Adaptive LASSO (SEA-
LASSO) and Minim ax Concave Penalty (MCP).

This paper is regularized as follows: A multiple regression model and an
explanation showing the SEA-LASSO method and the MCP, which both estimate and
select important variables simultaneously, are presented in Section 2. In Section 3, it
was specifically designed to study simulation and summarize its results. In Section 4
A brief conclusion of this study is included.

2- Multiple Regression Model
A model that contains two or more explanatory variables is called multiple
linear regression.
The multiple form has the following form:
Yi = ,80 + ,leil + "'+:kaik +Ei i= 1, R (R (1)

The coefficients,fo,B1,...,8 , are unknown, and e.,..,€,, are distributed according to
N(©, ¢?).
Model (2.1) can be written in matrix form as follows [ 4 ] :

Y=XB +¢ (2)
Vi 1 X311 X2 0 Xk Bo €1
y 1 Xn1 Xn2 *° Xnn ﬁk €4
Where:

Y : response vector Y.
X : design matrix X,«x.
B : coefficient vector Byxi -

¢ : the error vector €.
E(€=0 and cov(e) =021,
Least squares estimation is the well know method to estimate the un know vector of

(B) -



2-1 Standard Error Adjusted Adaptive LASSO (SEA-LASSO) Method.

It is a special case of adaptive lasso, this method was proposed by Qi an and
Yang (2013 )which are taken into account the standard errors of the estimators (OLS )
when calculating the elastic weights of the adaptive Lasso method that depends on
these weights when variables selection for the purpose of calculating the elastic
weights used Zou (2006) ordinary least squares estimations (OLS ), but the estimator
(OLS ) suffers from deficiencies in light of The presence of multi-linearity, which
makes the elastic weights unstable. The estimator is obtained by minimizing the
following Punitive Least Squares Function( PLSF)

BSEA — argmln[Z(Y _XB)Y? -1, ZWSEA|ﬁ]| . A20.. (3)
i=1 j=
Where : 4, X7_ W4|B;|, is called SEA- LASSO penalty function.  A,: The
tuning parameter
W;*F4: Estimated flexible weights. The elastic weights of the estimator SEA-

dSEA 14
LASSO are calculated as follows: W FA = (ﬁ)

Where :

39LSis the ordinary least squares estimator (OLS )for the regression parameter B;

]

sd?"4: Itis the standard error of the estlmator BPrs

QI an and Yang (2013) used tuning parameter value (y = 1) When the (SEA-
LASSO) method is implemented in the current simulation . Qian and Yang (2013)
has shown that by choosing a suitable parameter the estimator (4,,) is characterized as
an oracle, i.e. consistent in selecting variables and Asymptotically normal.
2-2 Minimax Concave Penalty (MCP) method.

MCP, a fast, continuous, nearly unbiased and accurate method of penalized
variable selection in high-dimensional linear regression suggested by Zhang 2010
.The MCP provides the convexity of the penalized loss in sparse regions to the
greatest extent given certain thresholds for variable selection and unbiasedness.
(Zhang, 2010). MCP solves:

1
minimizep - |ly — xBI3+P(B) .. (4)

where the derivative of the penalty function is [5] :

Bl
P'(B) {59"(3)( -) sl <y rrr(B)

_ otherwise
Where : y > 1. The penalty function can be written explicitly:

A(181-2), if 18l < ny
p (18]) = )(//12 W) W W< (6)

> otherwise

where y

: is a second positive hyperparameter that is determined by the researcher, in the simulation study
itwas set (y = 3). The MCP provides the sparse convexity to the broadest extent

by minimizing the maximum concavity (\Wang et al. (2018)).



Figure (1): Minim ax Concave Penalty (MCP) method

3. SIMULATION STUDY :

The comparison between method (SEA-LASSO ) and method (MCP) was
made using a simulated study that included different cases , and testing the effect of
the levels of these factors on the performance of these two ways. The program (R)
was used when studying the simulation .  The simulation study is presented as
following:

m Four levels of sample size were chosen ( 25,50 ,200,1000).

m Three levels of random error bound variance were used to compare these two
methods .

(6%= 0.25, 0%2=1, o= 3).

m Five levels of linear correlation were used for the explanatory variables (p = 0.5
, p=10.7

p=09, p=095, p=0.99).

m Two levels of real model regression parameter values were used, and at both
levels the number of real model variables were set P,;= 2, and the total
number of variables P = 8 is as follows :

The first level: The regression parameters of the real model variables are equal §; =6
for j=1,2
The second level: The different regression parameters of the real model variables f;
=6-—j forj=1,2.
At both levels, itis: ;=0 for j=34,.8

m Based on the levels of the factors of the previous study, 1000 samples were
generated from the linear regression model: Y =XB +¢ :
For each of the study cases, as follows:

1- The random error term was generated from the normal distribution e~ N (0, 621,,))

2- The design matrix was generated from a multivariate normal distribution with zero
mean vector (0py;) and a covariance matrix equal to the unit matrix (I,). In
order to obtain the required degree of linear correlation between the explanatory
variables, without any approximation, which makes it possible to observe the real
effect of the required linear correlation on the performance of the two methods.

3- Depending on (1) and (2) the response vector is obtained : Y = X3 +¢ .

m Qi an and Yang ,(2013) used the BIC criterion (Schwarz, 1978)to choose the tuning
parameter (1) for the SEA-LA SSO method as well as for ( MCP ) method, which
was calculated for each sample for each case of the study as follows:



~n2
BIC(xA)= In(2ZELy 4200 o gt (g oo (7)

Where df (xf) : is the degree of freedom .

Many researchers agree, for example (Efron et al, 2004: Zou et al, 2007) that df
(xf)is equal to the number of estimates of non-zero regression coefficients. The best
value for the tuning parameter (A) is chosen, which makes the BIC criterion as low as
possible.

A comparison was made between the two methods based on the following :

1- Extracting the percentage of runs (PCT), which works on evaluating the behavior
of the two methods in terms of their ability to reach the real model under a specific

case, and it is defined as follows:
The number of times the real model is reached

PCT = x 100......(8)

n
Where : n = number of samples = 1000 sample and 0 < PCT < 100
Ifitis (PCT =0), this means that the Penalized method was not able to reach the true
model in all samples, and when ( PCT=100) this means that the Penalized method was
able to reach the true model in all samples. This means that the Penalized method that
gives the highest percentage (PCT) is the best in the light of the concerned case (
Kalu, 2014) .
2- To evaluate the performance of the two methods, it was relied on Mean of Squared
Errors (MSE) in terms of the accuracy of the estimate, for each case of the
study, as follows:

1000 Tttt .

Where B, : Itis the estimation of the regression parameters vector for sample No.
(r) for either of the two methods. The method that gives less (MSE ) is preferable to
the given case.



3.1 Study results analysis.

In this section, we discuss the ability of the two methods to reach the real model,
and evaluate the performance of the two methods in terms of the accuracy of the
estimate, as shown in the following tables.

Table (1): The percentage of runs to reach the real model (PCT) and the mean of the
squares of error (MSE ) for the two methods (SEA-LASSO and MCP ), when using
the first level, if the regression coefficients of the real model variables are equal, when
the sample size is small ( n =25 ) and three levels of variance of the random error term
(low variance(o?= 0.25), medium variance (62= 1), and high variance (o%= 3),
using five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9,

0.95, 0.99).
Case levels of correlation Variance( a2) PCT MSE
sequence (p) MCP SEA- MCP SEA-
LASSO LASSO
1 0.5 0.25 62 100 0.0821 0.0323
2 0.7 0.25 54.2 100 0.2319 0.0497
3 0.9 0.25 56.1 100 0.3717 0.1404
4 0.95 0.25 50.1 100 0.7124 0.3436
5 0.99 0.25 53.9 96.6 3.7587 3.7069
6 0.5 1 58.9 96.9 0.2906 0.1343
7 0.7 1 52.9 97.9 0.4972 0.2002
8 0.9 1 52.8 96.8 2.4617 0.6550
9 0.95 1 53.4 92.9 2.9401 1.6619
10 0.99 1 51.2 60.3 15.8373 19.2869
11 0.5 3 59.9 72.2 0.7589 0.6731
12 0.7 3 52.9 69.9 1.9668 1.0822
13 0.9 3 50.8 70.9 3.7018 3.1759
14 0.95 3 51.9 65.9 8.8726 7.9505
15 0.99 3 45.2 19.9 56.6079 63.1922

We note from Table (1) that the (SEA-LASSO) method is superior to the MCP
method when using the first level of the vector (B), when the sample size is small and
the variance is low (o2= 0.25). The (Sea-Lasso) method has the lowest level (MSE)
when using this level. Also (Sea-Lasso method) was able to achieve the percentage
(PCT = 100) in most of the cases and the MCP method could not reach this
percentage. But when the variance is medium o2= 1), the (Sea-Lasso) method has the
lowest (MSE) in most cases and gives the highest (PCT) than the (MCP) method. In
the case of high variance (o%= 3), the (Sea-Lasso) method has the lowest (MSE), and
gives the highest percentage (PCT) than the (MCP) method in most cases.




Table (2). The percentage of runs to reach the real model (PCT) and the mean of the
squares of error (MSE ) for the two methods, when using the first level, , if the
sample size is medium (' n =50) and three levels of variance of the random error term
(low variance(o?= 0.25), medium variance (%= 1 ), and high variance (c2=
3),using five levels of linear correlation between the explanatory variables (0.5, 0.7,
0.9, 0.95, 0.99).

Case levels of Variance( o%) PCT MSE
sequence correlation (p) MCP SEA- MCP SEA-

LASSO LASSO
1 0.5 0.25 73.8 100 0.0196 0.0179
2 0.7 0.25 71.2 100 0.0239 0.0240
3 0.9 0.25 72.3 100 0.2113 0.0581
4 0.95 0.25 73.1 100 0.3235 0.2677
5 0.99 0.25 75.6 100 1.4116 1.9221
6 0.5 1 72.5 100 0.2258 0.0816
7 0.7 1 73.1 100 0.2064 0.0667
8 0.9 1 71.8 100 0.4992 0.3111
9 0.95 1 72.9 97.8 2.2141 0.5576
10 0.99 1 68.8 84.9 6.1187 9.1315
11 0.5 3 75.9 92.7 0.2931 0.1955
12 0.7 3 70.7 95.4 0.4976 0.2817
13 0.9 3 713 91.3 2.0611 0.9567
14 0.95 3 74.2 86.6 2.8627 1.0809
15 0.99 3 62.9 55 21.998 29.068

We note from Table (2) that the (SEA-LASSO) method is superior to (MCP) when
using the first level of the vector () when the sample size is medium (n=50 ) and the
variance is low (2= 0 .25). The (Sea-Lasso) method had the lowest (MSE) in this
type of sample when using this level, and (Sea-Lasso) method was able to achieve the
ratio (PCT = 100) in all cases and the MCP method could not reach this the ratio.

When the variance is medium(o?= 1), the (Sea-Lasso) method has the least (MSE)
in this type of sample when using this level, and the (Sea-Lasso) method was able to
achieve the ratio (PCT = 100) in most cases, and the MCP method could not reach
this percentage.

In the case of high variance, the (Sea-Lasso) method has the lowest (MSE) in this
type of sample when using this level, and gives the highest percentage (PCT) than the
(MCP) method in most cases.




Table (3): The percentage of runs to reach the real model (PCT) and the mean of the
squares of error (MSE ) for the two methods, when using the first level, if the sample
size is relatively large ( n =200) and three levels of variance of the random error term
(low variance(o?= 0.25), medium variance (¢?= 1), and high variance (c%= 3)
using five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9,

0.95, 0.99).
case levels of correlation Variance PCT MSE
sequence (p) () MCP SEA- MCP SEA-

LASSO LASSO
1 05 0.25 88.9 100 0.0290 0.0155
2 0.7 0.25 86.9 100 0.0199 0.0175
3 0.9 0.25 84.8 100 0.0187 0.0115
4 0.95 0.25 86.7 100 0.0395 0.0302
5 0.99 0.25 87.8 100 0.3901 0.6892
6 0.5 1 93.2 100 0.0279 0.0262
7 0.7 1 85.7 100 0.0412 0.0339
8 0.9 1 86.9 100 0.2071 0.1579
9 0.95 1 88.3 100 0.2811 0.2485
10 0.99 1 85.9 97.9 0.8716 1.9973
11 0.5 3 92.3 100 0.0712 0.0392
12 0.7 3 85.9 100 0.2041 0.1601
13 0.9 3 88.9 100 0.2951 0.2010
14 0.95 3 89.1 100 0.4989 0.3981
15 0.99 3 87.9 92.9 3.1712 4.9249

We notice from Table (3) that the (SEA-LASSO) method is superior to (MCP) when
using the first level of the vector () when the sample is relatively large (n=200) and
the variance is low(o?=0 .25), and the (Sea-Lasso) method has less (MSE) In most
cases, it also achieved the percentage (PCT = 100) in all cases, and the MCP method
was not able to reach this percentage.

In the case of medium variance (62=1 ), the (Sea-Lasso) method had the lowest
(MSE), and (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in
most cases.

When the variance is high, the (Sea-Lasso) method has a lower (MSE) than the
(MCP), and it was able to achieve the percentage (PCT = 100) in most of the cases.




Table (4): The percentage of runs to reach the real model (PCT) and the mean of the
squares of error (MSE ) for the two methods, when using the first level, if the sample
size is very large ( n =1000) and three levels of variance of the random error term
(low variance(o?= 0.25), medium variance (¢?= 1), and high variance (c%= 3)
using five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9,
0.95, 0.99).

case levels of correlation | Variance ( ?) PCT MSE
sequence (p) MCP SEA- MCP SEA-

LASSO LASSO
1 05 0.25 94.9 100 0.0109 0.0225
2 0.7 0.25 96.1 100 0.0112 0.0156
3 0.9 0.25 93.9 100 0.0141 0.0231
4 0.95 0.25 94.8 100 0.0179 0.0411
5 0.99 0.25 94.9 100 0.0343 0.4451
6 0.5 1 94.9 100 0.0125 0.0165
7 0.7 1 95.1 100 0.0161 0.0168
8 0.9 1 96.2 100 0.0228 0.0271
9 0.95 1 95.2 100 0.0290 0.0382
10 0.99 1 95.1 100 0.2371 0.5939
11 0.5 3 94.9 100 0.0214 0.0227
12 0.7 3 94.1 100 0.0271 0.0251
13 0.9 3 95.8 100 0.0359 0.0399
14 0.95 3 95,2 100 0.0911 0.1191
15 0.99 3 94.8 100 0.5236 1.9299

We note from Table (4) that the (SEA-LASSO) method is superior to (MCP)
when using the first level of the vector (B) when the sample is very large and the

variance is low. The (MCP) method has the lowest (MSE) in this type of sample when
using this level, and the (Sea-Lasso) method was able to achieve the percentage (PCT
=100) in all cases.

In the case of the medium variance (o= 1), the (MCP) method has the lowest
(MSE) in this type of sample when using this level of the ( Sea-Lasso ) method, but
the (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in all cases.

But when the variance is high (2= 3 ). The (MCP) method has less (MSE) in
most cases than this type of sample when using this level of (Sea-Lasso) method, but
also (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in all cases.



Table (5): The percentage of runs to reach the real model (PCT) and the mean of the
squares of error (MSE ) for the two methods, when using the second level, i.e. when
the regression parameters of the real model variables are not equal. If the sample size
is small (n =25) and three levels of variance of the random error term (low
variance(o?= 0.25), medium variance (6%= 1), and high variance (%= 3) using
five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9, 0.95,

0.99).
case levels of Variance (o?) PCT MSE
sequence | correlation (p) MCP SEA-LASSO MCP SEA-

LASSO
1 0.5 0.25 59.9 100 0.0617 | 0.0295
2 0.7 0.25 51.9 100 0.2438 | 0.0381
3 0.9 0.25 53.8 98.9 0.2942 | 0.1537
4 0.95 0.25 50.9 98.7 0.7906 | 0.1978
5 0.99 0.25 53.9 82.1 3.0801 | 3.9197
6 0.5 1 58.9 81.9 0.3211 0.2951
7 0.7 1 52.9 88.1 0.4961 0.3018
8 0.9 1 54.1 82.9 1.9078 0.8901
9 0.95 1 53.3 77.1 3.0326 1.9713
10 0.99 1 40.3 384 19.989 | 20.9601
11 0.5 3 62.1 66.1 0.7561 0.6810
12 0.7 3 52.9 62.9 1.9653 1.3754
13 0.9 3 51.9 59.2 5.0324 4.0701
14 0.95 3 48.8 52.3 9.8821 9.2342
15 0.99 3 16.1 7.9 56.0172 | 52.9761

We note from Table ( 5 ) that the (Sea-LASSO) method is superior to the MCP
method when using the second level of the vector (), when the sample size is small
and the variance is low. Where she had lower (MSE) in most cases. Also (Sea-Lasso)
method was able to achieve the percentage (PCT = 100) in two cases and achieved the
highest percentage in the rest of the cases.

It also outperformed the (MCP) method when the variance is medium and has the
lowest (MSE) in most cases, and gives a higher percentage (PCT) than the (MCP)
method in most cases.

As for the high variance. The (Sea-Lasso) method had lower (MSE) in most of the
cases, and gave the percentage (PCT) slightly higher than (MCP) method in most
cases.
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Table (6): The percentage of runs to reach the real model (PCT) and the mean of
the squares of error (MSE ) for the two methods, when using the second level, if the
sample size is medium (' n =50) and three levels of variance of the random error term
(low variance(o?= 0.25), medium variance (6?= 1 ), and high variance (o%=
3),using five levels of linear correlation between the explanatory variables (0.5, 0.7,

0.9, 0.95, 0.99).
case levels of correlation Variance (o2) PCT MSE

sequence (p) MCP [ SEA-LASSO MCP SEA-LASSO
1 0.5 0.25 75.1 100 0.0498 0.0245
2 0.7 0.25 711 100 0.0502 0.0151
3 0.9 0.25 70.8 100 0.1328 0.0591
4 0.95 0.25 70.9 100 0.3041 0.1815
5 0.99 0.25 75.1 95.9 0.9981 1.9131
6 0.5 1 73.9 97.9 0.2115 0.0551
7 0.7 1 70.8 97.5 0.2937 0.0887
8 0.9 1 71.9 96.8 0.4724 0.1976
9 0.95 1 72.8 935 0.9921 0.5791
10 0.99 1 65.6 67.6 5.9661 8.9549
11 0.5 3 76.1 80.4 0.4264 0.1956
12 0.7 3 71.8 82 0.4966 0.3924
13 0.9 3 70.1 80 1.9760 1.7484
14 0.95 3 71 76.9 2.8909 2.2322
15 0.99 3 37.8 27.5 25.9433 31.8783

We note from Table (6) that the (SEA-LASSO) method is superior to (MCP) when
using the second level of the vector (B) when the sample size is medium and the
variance is low. The (Sea-Lasso) method had the lowest (MSE) in this type of sample
when using this level, and (Sea-Lasso) method was able to achieve the ratio (PCT =
100) in most cases.

We also note in this table that the (SEA-LASSO) method is superior to (MCP) when

case levels of correlation Variance ( 62) PCT MSE
sequence (p) MCP SEA-LASSO MCP SEA-LASSO
1 0.5 0.25 88.5 100 0.0049 0.0043
2 0.7 0.25 86.7 100 0.0079 0.0065
3 0.9 0.25 84.9 100 0.0187 0.0199
4 0.95 0.25 86.8 100 0.0511 0.0299
5 0.99 0.25 87.9 100 0.1919 0.4921
6 0.5 1 90.9 100 0.0192 0.0152
7 0.7 1 86.8 100 0.0417 0.0199
8 0.9 1 86.7 100 0.1119 0.0807
9 0.95 1 88 100 0.2097 0.1702
10 0.99 1 88.1 98.6 0.8968 1.9578
11 0.5 3 89.9 97.9 0.0617 0.0521
12 0.7 3 88.1 99 0.2098 0.0583
13 0.9 3 88.7 98.6 0.1885 0.1594
14 0.95 3 87.8 98.9 0.6381 0.5221
15 0.99 3 85.6 77.9 2.6999 6.9491

the variance is medium. It also has lower (MSE) and higher percentage (PCT) than
(MCP) method in most cases.

As for the high variance. The Sea-Lasso method has a lower MSE and a higher PCT
rate than MCP in most cases.

Table (7): The percentage of runs to reach the real model (PCT) and the mean of the
squares of error (MSE ) for the two methods, when using the second level, if the
sample size is relatively large ( n =200) and three levels of variance of the random
error term (low variance(a?= 0.25), medium variance (6%= 1), and high variance
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(o?= 3),using five levels of linear correlation between the explanatory variables (0.5,
0.7,0.9, 0.95, 0.99).

We note from Table (7) that the (SEA-LASSO) method is superior to (MCP)
when using the second level of the vector (B) when the sample is relatively large and
the variance is low. It also has less (MSE) in most cases, and was (Sea-
Lasso)method was able to achieve the percentage (PCT = 100) in all cases, and the
MCP method was not able to reach this percentage.

We also note from the table that the (SEA-LASSO) method is superior to (MCP)
when the variance is medium. Whereas, the MSE was lower in most cases, and the
(Sea-Lasso) method was able to achieve the percentage (PCT = 100) in most cases.

As for the high variance. The (Sea-Lasso) method had the lowest (MSE) in most
cases, and (Sea-Lasso) method was able to give a higher percentage (PCT) than the
(MCP) method in most of the cases.

Table (8) :The percentage of runs to reach the real model (PCT) and the mean of the
squares of error (MSE ) for the two methods, when using the second level, if the
sample size is very large ('n =1000) and three levels of variance of the random error
term (low variance(a?= 0.25), medium variance (¢%= 1), and high variance (¢%= 3)
using five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9,

0.95, 0.99).
case levels of correlation Variance (02) PCT MSE

sequence (p) MCP | SEA-LASSO MCP SEA-LASSO
1 0.5 0.25 94.9 100 0.0017 0.0135
2 0.7 0.25 96.1 100 0.0025 0.0045
3 0.9 0.25 93.8 100 0.0050 0.0231
4 0.95 0.25 96.1 100 0.0068 0.0436
5 0.99 0.25 94.9 100 0.0432 0.5252
6 0.5 1 94.9 100 0.0028 0.0038
7 0.7 1 95.2 100 0.0049 0.0055
8 0.9 1 96.1 100 0.0128 0.0222
9 0.95 1 95.3 100 0.0298 0.0597
10 0.99 1 95.2 100 0.3420 0.6188
11 0.5 3 96.2 100 0.0201 0.0154
12 0.7 3 94.1 100 0.0199 0.0158
13 0.9 3 95.6 100 0.0380 0.0399
14 0.95 3 94.9 100 0.0643 0.2541
15 0.99 3 94.8 97.9 0.3915 0.8756

We notice from Table (8) that the (SEA-LASSO) method is superior to (MCP)
when using the second level of the vector (B) when the sample is very large and the
variance is low. The (MCP) method had the lowest (MSE) in this type of sample
when using this level, and the (Sea-Lasso) method was able to achieve the percentage
(PCT =100) in all cases.

We also note from the table that the (SEA-LASSO) method is superior to (MCP)
when the variance is medium. The (MCP) method had the lowest (MSE) in this type
of sample, and (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in
all cases.

In the case of high variance, the (MCP) method has less (MSE) in most cases, and
the (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in most
cases.
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4. Conclusion

This study presented a comparison between two punitive methods that were used
in this research to estimate and select the appropriate variables at the same time in the
multiple regression model and to choose the best, namely (SEA-LASSO) method and
(MCP) method. The results showed that the (SEA-LASSO) method outperformed the
(MCP) method in terms of accessing the real model measured by (PCT), and
estimation accuracy, as it achieved the lowest (MSE) in most cases for small samples
(n = 25) and medium samples ( n = 50) in the first and second levels.

The (SEA-LASSO) method is best in the cases of relatively large samples (n = 200)
in view of the medium and high variance(s?= 1, 02= 3) , regardless of the equality
or difference in the regression coefficients of the real model variables.

In the case of very large samples (n = 1000), the MCP method had the lowest (MSE),
but it did not outperform the (SEA-LASSO) method in terms of access to the real
model ( PCT ), where the (SEA-LASSO) method had achieved the highest
percentage. Thus, the (SEA-LASSO) method is considered the best in terms of access
to the real model (PCT) and in terms of estimation accuracy because it achieved the
lowest (MSE) in most cases by studying the simulation results.

We recommend the use of some other variable selection methods such as Group
Lasso, and other methods of regularization that work on estimating and appropriate
selection of variables at the same time, addressing the polyline problem, and solving
other statistical problems
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Golal Laag ¢ amiall s zlgal B gl Gudi A dpuliall @ padall jLidlg padil aamll
s (Minimax Concave Penalty (MCP s (SEA-LASSO) Uaill Jmall 5 aall LASSO
Sl sl
dagall il ptiall Cuaiall JLEAY) g palll) Jo Jand andiii 48, b Juad] aladiind o 48 ) A< 38 5
s Jsasll MCP 5 SEA-LASSO 48 b aladinly sasmial) 43badl) AlCha dallaag cidgl) (i
adall 73 gadl)

i) Llee Eua e (MCP) 48 by (SEA-LASSO) 4 hal as ) 48,501 oda Ciags
SlSlaall Ay A (e sasaiall ddadl) AlCiia dallaa g dalgdl @l piiall Colial) JLIAY) 9
JLal g Jalgad) (e Allida eVl Lo claidl il g o phall ¢l G A Ll BlSlae Al 3 Cy ol
L3 g (1) dasdal) Jalaa dagd pyans i g ¢ iy yhall ouila £ o Jal gadl oda iy glasa il
SEA-) 48k () BlSlaal) il gl iy jall o100 an daliad o 2y 3 Gulial] g Lgd Aad Juad
dal) Zigalll ) Jguasll Jdill 4y giall Ludll & e (MCP) 435k o (§4d5 (LASSO
(MSE) g8 (3iay 43 (MSE) Wad) cilay ja Jaa gia Eun (ha Juadl g LS ¢ (PCT) A g alial)
R el g BlSlaca Al 3 aladin) a3 MY alina b

Multiple regression model , Adjusted Adaptive LASSO (SEA- ¢ :duwsi ) cilalsl)
LASSO), Minimax Concave Penalty (MCP).
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