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ABSTRACT 
     Variable selection is an important topic in linear regression analysis. In practice, a large number of 

predictors are usually introduced at the initial stage of model construction to mitigate potential model 

biases. On the other hand, to enhance the ability to predict and select important variables. 

The statisticians made great efforts in developing regularization procedures to solve the problems of 

V.S. These actions automatically facilitate Variable selection  (V.S) by setting specific coefficients to 

zero and reducing coefficient estimates, providing useful estimates even if the model contains a large 

number of variables. In this paper, two methods of regularization were proposed to estimate and select 

the appropriate variables at the same time in the multiple regression model, which are the Standard 

Error Adjusted Adaptive LASSO (SEA-LASSO) and Minim ax Concave Penalty (MCP) method and 

selection of the best. The paper problem focuses on using the best regularization method that works on 

estimation and appropriate selection of important variables at the same time and addressing the 

problem of multiple linearity using the SEA-LASSO and MCP method. To get the real model. 

     This paper aims to evaluate the performance of the method (SEA-LASSO) and method (MCP) in 

terms of the process of estimation and appropriate selection of important variables and treatment the 

problem multicollinearity through the simulation study.   

A simulation study was conducted to compare between these two methods, which included different 

cases of the factors and testing the effect of the levels of these factors on the performance of these two 

ways, as well as determining the value of the control parameter (  ) and the criterion for selecting the 

best value for it and the basis on which to evaluate the performance of the two methods. The simulation 

results showed that (SEA-LASSO) method is superior to (MCP) method in terms of percentage of 

operation to reach the real model measured by (PCT), and it is also better in terms of mean squares 

error (MSE) because it achieves less (MSE) in most cases. A simulation study was used with the 

program R.  

Keywords:   Multiple regression model , Adjusted Adaptive LASSO (SEA-LASSO), Minimax 

Concave Penalty (MCP) 

. 

1- Introduction 
     In some multiple regression applications, the number of predictors have become 

large, which is why, the analysis of that data has become difficult. For the purpose of 

dealing with this problem, it is necessary to perform dimensionality shrinkage of data 

with a few assumptions. When talking about dimensionality reduction, it indicates the 

fact that there are high dimensions, those dimensions have been referred to as the 

variables or features. Increasing the number of these variables in the multiple 

regression model, means that the model will be more difficult to analysis the data. 

Thus, a problem will be encountered, known as the curse of dimensions where term 

curse of dimensions was introduced by Bellman (1961) when data is sparse in multi-

dimensional spaces. Also in the case of linear correlation between the High-

dimensional data (HD). In which the greater the number of the variables makes it 

more difficult predicting a certain quantity. Those variables might not be all 

influential or effective, or can be interconnected and thereby, redundant which will 

require reduction. Which is why, dimensionality reduction process means the 

conversion of the (HD) into a space of a smaller size. It has a significant impact to 
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solve this problem and by reducing the number of the random variables, in other 

words, simplifying the understanding of the data only visually or numerically and thus 

ensuring the integrity of data. Moreover, there are other advantages to the reduction of 

dimensionality where it operates on data compression and reduces the time of the 

calculations and there are some methods which do not operate efficiently in the cases 

of very high dimensions (Lian, 2012). Thus, it is necessary to work on the reduction 

of the dimension to obtain a simplified model.  Therefore, the researchers suggested 

many regulatory Methods that work on the estimation and selection appropriate  of 

important variables at the same time and treatment the problem multicollinearity, 

among these methods are the Standard Error Adjusted Adaptive LASSO (SEA-

LASSO) and Minim ax Concave Penalty (MCP). 

     This paper is regularized as follows: A multiple regression model and an 

explanation showing the SEA-LASSO method and the MCP, which both estimate and 

select important variables simultaneously, are presented in Section 2.   In Section 3, it 

was specifically designed to study simulation and summarize its results.  In Section 4 

A brief conclusion of this study is included. 

 

2- Multiple Regression Model 
         A model that contains two or more explanatory variables is called multiple 

linear regression. 

   The multiple form has the following form: 

                + …+       +                       …….(1) 

 

The coefficients, ₀, ₁,…,   , are unknown, and ϵ₁,  ,   are distributed according to 

N(0,    ) . 

  Model (2.1) can be written in matrix form as follows [ 4 ] :                     
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Where: 

      response vector       

    design matrix         

  : coefficient vector      . 

 ϵ : the error vector                                                                                                           
        ( ) = 0    and       ( ) =       

Least squares estimation is the well know method to estimate the un know vector of 
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2-1 Standard Error Adjusted Adaptive LASSO (SEA-LASSO) Method. 

             It is a special case of adaptive lasso, this method was proposed by Qi an and 

Yang (2013 )which are taken into account the standard errors of the estimators (OLS ) 

when calculating the elastic weights of the adaptive Lasso method that depends on 

these weights when variables selection for the purpose of calculating the elastic 

weights used Zou (2006) ordinary least squares estimations (OLS ), but the estimator 

(OLS ) suffers from deficiencies in light of The presence of multi-linearity, which 

makes the elastic weights unstable. The estimator  is obtained by minimizing the 

following Punitive Least Squares Function( PLSF) :  

 ̂          
 

 ∑     

 

   

      ∑  ̂ 
   |  |

 

   

                             

Where :      ∑  ̂ 
   |  |

 
    ,  is called SEA-LASSO penalty  function.          The 

tuning parameter 

 ̂ 
   : Estimated flexible weights.    The elastic weights of the estimator  SEA-

LASSO  are calculated as follows:               ̂ 
    = (

   
   

  ̂ 
    

)
 

 

Where : 

 ̂ 
                                                                                 

. 

    
   : It is the standard error of the estimator  ̂ 

    . 

   Qi an and Yang (2013) used tuning parameter value (𝛾 = 1) When the (SEA-

LASSO) method is implemented in the current simulation .  Qian and Yang (2013)  

has shown that by choosing a suitable parameter the estimator (  ) is characterized as 

an oracle, i.e. consistent in selecting variables and Asymptotically  normal. 

2-2 Minimax Concave Penalty (MCP) method. 

     MCP, a fast, continuous, nearly unbiased and accurate method of penalized 

variable selection in high-dimensional linear regression suggested by Zhang 2010 

.The MCP provides the convexity of the penalized loss in sparse regions to the 

greatest extent given certain thresholds for variable selection and unbiasedness.  

(Zhang, 2010).   MCP solves: 

          
 

 
 ‖    ‖ 

  + P(  ………………(4) 

 

where the derivative of the penalty function is  [5] : 
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Where : 𝛾   1 .  The penalty function can be written explicitly: 

  (    )  = {
  (     
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                      The MCP provides the sparse convexity to the broadest extent 

by minimizing the maximum concavity (Wang et al. (2018)).  
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Figure (1):  Minim ax Concave Penalty (MCP) method 

 

 

3.   SIMULATION STUDY : 

           The comparison between method (SEA-LASSO ) and method (MCP) was 

made using a simulated study that included different cases , and testing the effect of 

the levels of these factors on the performance of these two ways.  The program (R) 

was used when studying the simulation .   The simulation study is presented as 

following: 

  Four levels of sample size were chosen ( 25 ,50 ,200,1000). 

  Three levels of random error bound variance were used to compare these two 

methods . 

(   0.25,        1 ,       3 ) . 

  Five levels of linear correlation were used for the explanatory variables ( 0.5 

,   0.7 

 0.9  ,    0.95  ,   0.99 ) . 

     Two levels of real model regression parameter values were used, and at both 

levels the number of             real model variables were set   = 2 ,  and the total 

number of variables   = 8 is as follows : 

The first level: The regression parameters of the real model variables are equal    6     

for   j 1,2 

The second level: The different regression parameters of the real model variables    

6 j   for j1,2 . 

              At both levels, it is:      0       for     j 3,4,..,8 

  Based on the levels of the factors of the previous study, 1000 samples were 

generated from the linear                    regression model:                 Y X        ,      

For each of the study cases, as follows: 

  1- The random error term was generated from the normal distribution  N (0,     ) 

. 

2- The design matrix was generated from a multivariate normal distribution with zero 

mean vector (    )          and a covariance matrix equal to the unit matrix (  ). In 

order to obtain the required degree of linear correlation between the explanatory 

variables, without any approximation, which makes it possible to observe the real 

effect of the required linear correlation on the performance of the two methods. 

3- Depending on (1 ) and (2) the response vector is obtained : Y X   . 

  Qi an and Yang ,(2013) used the BIC criterion (Schwarz, 1978)to choose the tuning 

parameter ( ) for the SEA-LA SSO  method as well as for ( MCP ) method, which 

was calculated for each sample for each case of the study as follows: 



 

 5 

BIC(  ̂ = ln( 
‖    ̂‖

 

 
 ) +

       

 
    ̂f (  ̂    ……….(  7) 

Where  ̂f (  ̂   :   is the degree of freedom . 

Many researchers agree, for example (Efron et al, 2004; Zou et al, 2007) that  ̂f 

(  ̂ is equal to the number of estimates of non-zero regression coefficients.  The best 

value for the tuning parameter (λ) is chosen, which makes the BIC criterion as low as 

possible. 

    A comparison was made between the two methods based on the following : 

1-  Extracting the percentage of runs (PCT), which works on evaluating the behavior 

of the two  methods in terms of their ability to reach the real model under a specific 

case, and it is defined as follows: 

PCT = 
                                             

 
   00……(8) 

Where :  n = number of samples = 1000 sample and  0            

If it is ( PCT = 0 ), this means that the Penalized method was not able to reach the true 

model in all samples, and when ( PCT=100) this means that the Penalized method was 

able to reach the true model in all samples. This means that the Penalized method that 

gives the highest percentage (PCT) is the best in the light of the concerned case ( 

Kālu, 2014) . 

 2- To evaluate the performance of the two methods, it was relied on Mean of Squared 

Errors (MSE) in           terms of the accuracy of the estimate, for each case of the 

study, as follows:  

MSE = 
∑ ‖ ̂   ‖

     
   

    
 ………(9) .      

 Where   ̂    :  It is the estimation of the regression parameters vector for sample No. 

(r) for either of the two methods.    The method that gives less (MSE ) is preferable to 

the given case. 
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3.1  Study results analysis. 
        In this section, we discuss the ability of the two methods to reach the real model, 

and evaluate the performance of the two methods in terms of the accuracy of the 

estimate, as shown in the following tables. 

Table (1): The percentage of runs to reach the real model (   ) and the mean of the 

squares of error (MSE ) for the   two methods (SEA-LASSO and MCP ), when using 

the first level, if the regression coefficients of the real model variables are equal, when 

the sample size is small ( n =25 ) and three levels of variance of the random error term 

(low variance    0.25), medium variance (   1 ), and high variance (   3), 

using five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9, 

0.95, 0.99). 
Case  

sequence  

levels of correlation 

(   ) 
Variance(     PCT MSE 

MCP SEA-

LASSO 

MCP SEA-

LASSO 

1 0.5 0.25 62 100 0.0821 0.0323 

2 0.7 0.25 54.2 100 0.2319 0.0497 

3 0.9 0.25 56.1 100 0.3717 0.1404 

4 0.95 0.25 50.1 100 0.7124 0.3436 

5 0.99 0.25 53.9 96.6 3.7587 3.7069 

6 0.5 1 58.9 96.9 0.2906 0.1343 

7 0.7 1 52.9 97.9 0.4972 0.2002 

8 0.9 1 52.8 96.8 2.4617 0.6550 

9 0.95 1 53.4 92.9 2.9401 1.6619 

10 0.99 1 51.2 60.3 15.8373 19.2869 

11 0.5 3 59.9 72.2 0.7589 0.6731 

12 0.7 3 52.9 69.9 1.9668 1.0822 

13 0.9 3 50.8 70.9 3.7018 3.1759 

14 0.95 3 51.9 65.9 8.8726 7.9505 

15 0.99 3 45.2 19.9 56.6079 63.1922 

 

      We note from Table (1) that the (SEA-LASSO) method is superior to the MCP 

method when using the first level of the vector (β), when the sample size is small and 

the variance is low (   0.25). The (Sea-Lasso) method has the lowest level (MSE) 

when using this level. Also (Sea-Lasso method) was able to achieve the percentage 

(PCT = 100) in most of the cases and the MCP method could not reach this 

percentage. But when the variance is medium    1), the (Sea-Lasso) method has the 

lowest (MSE) in most cases and gives the highest (PCT) than the (MCP) method.  In 

the case of high variance (   3), the (Sea-Lasso) method has the lowest (MSE), and 

gives the highest percentage (PCT) than the (MCP) method in most cases. 
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 Table (2). The percentage of runs to reach the real model (PCT) and the mean of the 

squares of error (MSE ) for the   two methods, when using the first level, , if the 

sample size is medium  ( n =50) and three levels of variance of the random error term 

(low variance    0.25), medium variance (   1 ), and high variance (   

3),using five levels of linear correlation between the explanatory variables (0.5, 0.7, 

0.9, 0.95, 0.99). 

. 
Case  

sequence  

levels of 

correlation (   ) 
Variance(     PCT MSE 

MCP SEA-

LASSO 

MCP SEA-

LASSO 

1 0.5 0.25 73.8 100 0.0196 0.0179 

2 0.7 0.25 71.2 100 0.0239 0.0240 

3 0.9 0.25 72.3 100 0.2113 0.0581 

4 0.95 0.25 73.1 100 0.3235 0.2677 

5 0.99 0.25 75.6 100 1.4116 1.9221 

6 0.5 1 72.5 100 0.2258 0.0816 

7 0.7 1 73.1 100 0.2064 0.0667 

8 0.9 1 71.8 100 0.4992 0.3111 

9 0.95 1 72.9 97.8 2.2141 0.5576 

10 0.99 1 68.8 84.9 6.1187 9.1315 

11 0.5 3 75.9 92.7 0.2931 0.1955 

12 0.7 3 70.7 95.4 0.4976 0.2817 

13 0.9 3 71.3 91.3 2.0611 0.9567 

14 0.95 3 74.2 86.6 2.8627 1.0809 

15 0.99 3 62.9 55 21.998 29.068 

    We note from Table (2) that the (SEA-LASSO) method is superior to (MCP) when 

using the first level of the vector (β) when the sample size is medium (n=50 ) and the 

variance is low (  0 .25). The (Sea-Lasso) method had the lowest (MSE) in this 

type of sample when using this level, and (Sea-Lasso) method was able to achieve the 

ratio (PCT = 100) in all cases and the MCP method could not reach this the ratio. 

   When the variance is medium   1), the (Sea-Lasso) method has the least (MSE) 

in this type of sample when using this level, and the (Sea-Lasso) method was able to 

achieve the ratio (PCT = 100) in most cases, and the MCP method could not reach 

this percentage. 

   In the case of high variance, the (Sea-Lasso) method has the lowest (MSE) in this 

type of sample when using this level, and gives the highest percentage (PCT) than the 

(MCP) method in most cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 8 

 

Table (3): The percentage of runs to reach the real model (PCT) and the mean of the 

squares of error (MSE ) for the   two methods, when using the first level, if the sample 

size is relatively large  ( n =200) and three levels of variance of the random error term 

(low variance    0.25), medium variance (   1 ), and high variance (   3) 

using five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9, 

0.95, 0.99). 
case 

sequence  

levels of correlation 

(   ) 
Variance 

(    

PCT MSE 

MCP SEA-

LASSO 

MCP SEA-

LASSO 

1 0.5 0.25 88.9 100 0.0290 0.0155 

2 0.7 0.25 86.9 100 0.0199 0.0175 

3 0.9 0.25 84.8 100 0.0187 0.0115 

4 0.95 0.25 86.7 100 0.0395 0.0302 

5 0.99 0.25 87.8 100 0.3901 0.6892 

6 0.5 1 93.2 100 0.0279 0.0262 

7 0.7 1 85.7 100 0.0412 0.0339 

8 0.9 1 86.9 100 0.2071 0.1579 

9 0.95 1 88.3 100 0.2811 0.2485 

10 0.99 1 85.9 97.9 0.8716 1.9973 

11 0.5 3 92.3 100 0.0712 0.0392 

12 0.7 3 85.9 100 0.2041 0.1601 

13 0.9 3 88.9 100 0.2951 0.2010 

14 0.95 3 89.1 100 0.4989 0.3981 

15 0.99 3 87.9 92.9 3.1712 4.9249 

We notice from Table (3) that the (SEA-LASSO) method is superior to (MCP) when 

using the first level of the vector (β) when the sample is relatively large (n=200) and 

the variance is low   0 .25), and the (Sea-Lasso) method has less (MSE) In most 

cases, it also achieved the percentage (PCT = 100) in all cases, and the MCP method 

was not able to reach this percentage. 

In the case of medium variance (  1 ), the (Sea-Lasso) method had the lowest 

(MSE), and (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in 

most cases. 

  When the variance is high, the (Sea-Lasso) method has a lower (MSE) than the 

(MCP ), and it was able to achieve the percentage (PCT = 100) in most of the cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 9 

 

Table (4): The percentage of runs to reach the real model (PCT) and the mean of the 

squares of error (MSE ) for the   two methods, when using the first level, if the sample 

size is very large  ( n =1000) and three levels of variance of the random error term 

(low variance    0.25), medium variance (   1 ), and high variance (   3)  

using five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9, 

0.95, 0.99). 

 
case 

sequence  

levels of correlation 

(   ) 
Variance (     PCT MSE 

MCP SEA-

LASSO 

MCP SEA-

LASSO 

1 0.5 0.25 94.9 100 0.0109 0.0225 

2 0.7 0.25 96.1 100 0.0112 0.0156 

3 0.9 0.25 93.9 100 0.0141 0.0231 

4 0.95 0.25 94.8 100 0.0179 0.0411 

5 0.99 0.25 94.9 100 0.0343 0.4451 

6 0.5 1 94.9 100 0.0125 0.0165 

7 0.7 1 95.1 100 0.0161 0.0168 

8 0.9 1 96.2 100 0.0228 0.0271 

9 0.95 1 95.2 100 0.0290 0.0382 

10 0.99 1 95.1 100 0.2371 0.5939 

11 0.5 3 94.9 100 0.0214 0.0227 

12 0.7 3 94.1 100 0.0271 0.0251 

13 0.9 3 95. 8 100 0.0359 0.0399 

14 0.95 3 95,2 100 0.0911 0.1191 

15 0.99 3 94.8 100 0.5236 1.9299 

      We note from Table (4) that the (SEA-LASSO) method is superior to (MCP) 

when using the first level of the vector (β) when the sample is very large and the 

variance is low. The (MCP) method has the lowest (MSE) in this type of sample when 

using this level, and the (Sea-Lasso) method was able to achieve the percentage (PCT 

= 100) in all cases. 

     In the case of the medium variance (   1 ), the (MCP) method has the lowest 

(MSE) in this type of sample when using this level of the ( Sea-Lasso ) method, but 

the (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in all cases. 

       But when the variance is high (   3 ). The (MCP) method has less (MSE) in 

most cases than this type of sample when using this level of (Sea-Lasso) method, but 

also (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in all cases. 
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Table (5): The percentage of runs to reach the real model (PCT) and the mean of the 

squares of error (MSE ) for the two methods, when using the second level, i.e. when 

the regression parameters of the real model variables are not equal. If the sample size 

is small (n =25) and three levels of variance of the random error term (low 

variance    0.25), medium variance (   1 ), and high variance (   3)  using 

five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9, 0.95, 

0.99). 
case 

sequence  

levels of 

correlation (   ) 
Variance (     PCT MSE 

MCP SEA-LASSO MCP SEA-

LASSO 

1 0.5 0.25 59.9 100 0.0617 0.0295 

2 0.7 0.25 51.9 100 0.2438 0.0381 

3 0.9 0.25 53.8 98.9 0.2942 0.1537 

4 0.95 0.25 50.9 98.7 0.7906 0.1978 

5 0.99 0.25 53.9 82.1 3.0801 3.9197 

6 0.5 1 58.9 81.9 0.3211 0.2951 

7 0.7 1 52.9 88.1 0.4961 0.3018 

8 0.9 1 54.1 82.9 1.9078 0.8901 

9 0.95 1 53.3 77.1 3.0326 1.9713 

10 0.99 1 40.3 38.4 19.989 20.9601 

11 0.5 3 62.1 66.1 0.7561 0.6810 

12 0.7 3 52.9 62.9 1.9653 1.3754 

13 0.9 3 51.9 59.2 5.0324 4.0701 

14 0.95 3 48.8 52.3 9.8821 9.2342 

15 0.99 3 16.1 7.9 56.0172 52.9761 

      We note from Table ( 5 ) that the (Sea-LASSO) method is superior to the MCP 

method when using the second level of the vector (β), when the sample size is small 

and the variance is low. Where she had lower (MSE) in most cases. Also (Sea-Lasso) 

method was able to achieve the percentage (PCT = 100) in two cases and achieved the 

highest percentage in the rest of the cases. 

     It also outperformed the (MCP) method when the variance is medium and has the 

lowest (MSE) in most cases, and gives a higher percentage (PCT) than the (MCP) 

method in most cases. 

As for the high variance. The (Sea-Lasso) method had lower (MSE) in most of the 

cases, and gave the percentage (PCT) slightly higher than (MCP) method in most 

cases.      
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    Table (6): The percentage of runs to reach the real model (PCT) and the mean of 

the squares of error (MSE ) for the   two methods, when using the second level, if the 

sample size is medium ( n =50) and three levels of variance of the random error term 

(low variance    0.25), medium variance (   1 ), and high variance (   

3),using five levels of linear correlation between the explanatory variables (0.5, 0.7, 

0.9, 0.95, 0.99). 
case 

sequence  

levels of correlation 

(   ) 
Variance (     PCT MSE 

MCP SEA-LASSO MCP SEA-LASSO 

1 0.5 0.25 75.1 100 0.0498 0.0245 

2 0.7 0.25 71.1 100 0.0502 0.0151 

3 0.9 0.25 70.8 100 0.1328 0.0591 

4 0.95 0.25 70. 9 100 0.3041 0.1815 

5 0.99 0.25 75.1 95.9 0.9981 1.9131 

6 0.5 1 73.9 97.9 0.2115 0.0551 

7 0.7 1 70.8 97.5 0.2937 0.0887 

8 0.9 1 71.9 96.8 0.4724 0.1976 

9 0.95 1 72.8 93.5 0.9921 0.5791 

10 0.99 1 65.6 67.6 5.9661 8.9549 

11 0.5 3 76.1 80.4 0.4264 0.1956 

12 0.7 3 71.8 82 0.4966 0.3924 

13 0.9 3 70.1 80 1.9760 1.7484 

14 0.95 3 71 76.9 2.8909 2.2322 

15 0.99 3 37.8 27.5 25.9433 31.8783 

We note from Table (6) that the (SEA-LASSO) method is superior to (MCP) when 

using the second level of the vector (β) when the sample size is medium and the 

variance is low. The (Sea-Lasso) method had the lowest (MSE) in this type of sample 

when using this level, and (Sea-Lasso) method was able to achieve the ratio (PCT = 

100) in most cases. 

We also note in this table that the (SEA-LASSO) method is superior to (MCP) when 

the variance is medium. It also has lower (MSE) and higher percentage (PCT) than 

(MCP) method in most cases. 

 As for the high variance. The Sea-Lasso method has a lower MSE and a higher PCT 

rate than MCP in most cases. 

Table (7): The percentage of runs to reach the real model (PCT) and the mean of the 

squares of error (MSE ) for the two methods, when using the second  level, if the 

sample size is relatively large ( n =200) and three levels of variance of the random 

error term (low variance    0.25), medium variance (   1 ), and high variance 

case 
sequence  

levels of correlation 

(   ) 
Variance       PCT MSE 

MCP SEA-LASSO MCP SEA-LASSO 

1 0.5 0.25 88.5 100 0.0049 0.0043 

2 0.7 0.25 86.7 100 0.0079 0.0065 

3 0.9 0.25 84.9 100 0.0187 0.0199 

4 0.95 0.25 86.8 100 0.0511 0.0299 

5 0.99 0.25 87.9 100 0.1919 0.4921 

6 0.5 1 90.9 100 0.0192 0.0152 

7 0.7 1 86.8 100 0.0417 0.0199 

8 0.9 1 86.7 100 0.1119 0.0807 

9 0.95 1 88 100 0.2097 0.1702 

10 0.99 1 88.1 98.6 0.8968 1.9578 

11 0.5 3 89.9 97.9 0.0617 0.0521 

12 0.7 3 88.1 99 0.2098 0.0583 

13 0.9 3 88.7 98.6 0.1885 0.1594 

14 0.95 3 87.8 98.9 0.6381 0.5221 

15 0.99 3 85.6 77.9 2.6999 6.9491 
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(   3),using five levels of linear correlation between the explanatory variables (0.5, 

0.7, 0.9, 0.95, 0.99). 

          We note from Table (7) that the (SEA-LASSO) method is superior to (MCP) 

when using the second level of the vector (β) when the sample is relatively large and 

the variance is low. It also has less (MSE) in most cases, and   was (Sea-

Lasso)method  was able to achieve the percentage (PCT = 100) in all cases, and the 

MCP method was not able to reach this percentage. 

We also note from the table that the (SEA-LASSO) method is superior to (MCP) 

when the variance is medium. Whereas, the MSE was lower in most cases, and the 

(Sea-Lasso) method was able to achieve the percentage (PCT = 100) in most cases. 

     As for the high variance. The (Sea-Lasso) method had the lowest (MSE) in most 

cases, and (Sea-Lasso) method was able to give a higher percentage (PCT) than the 

(MCP) method in most of the cases. 

 

Table (8) :The percentage of runs to reach the real model (PCT) and the mean of the 

squares of error (MSE ) for the two methods, when using the second  level, if the 

sample size is very large  ( n =1000) and three levels of variance of the random error 

term (low variance    0.25), medium variance (   1 ), and high variance (   3)  

using five levels of linear correlation between the explanatory variables (0.5, 0.7, 0.9, 

0.95, 0.99). 
case 

sequence  

levels of correlation 

(   ) 
Variance       PCT MSE 

MCP SEA-LASSO MCP SEA-LASSO 

1 0.5 0.25 94.9 100 0.0017 0.0135 

2 0.7 0.25 96.1 100 0.0025 0.0045 

3 0.9 0.25 93.8 100 0.0050 0.0231 

4 0.95 0.25 96.1 100 0.0068 0.0436 

5 0.99 0.25 94.9 100 0.0432 0.5252 

6 0.5 1 94.9 100 0.0028 0.0038 

7 0.7 1 95.2 100 0.0049 0.0055 

8 0.9 1 96.1 100 0.0128 0.0222 

9 0.95 1 95.3 100 0.0298 0.0597 

10 0.99 1 95.2 100 0.3420 0.6188 

11 0.5 3 96.2 100 0.0201 0.0154 

12 0.7 3 94.1 100 0.0199 0.0158 

13 0.9 3 95.6 100 0.0380 0.0399 

14 0.95 3 94.9 100 0.0643 0.2541 

15 0.99 3 94.8 97.9 0.3915 0.8756 

     We notice from Table (8) that the (SEA-LASSO) method is superior to (MCP) 

when using the second level of the vector (β) when the sample is very large and the 

variance is low. The (MCP) method had the lowest (MSE) in this type of sample 

when using this level, and the (Sea-Lasso) method was able to achieve the percentage 

(PCT = 100) in all cases. 

   We also note from the table that the (SEA-LASSO) method is superior to (MCP) 

when the variance is medium. The (MCP) method had the lowest (MSE) in this type 

of sample, and (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in 

all cases. 

     In the case of high variance, the (MCP) method has less (MSE) in most cases, and 

the (Sea-Lasso) method was able to achieve the percentage (PCT = 100) in most 

cases. 
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4. Conclusion 

      This study presented a comparison between two punitive methods that were used 

in this research to estimate and select the appropriate variables at the same time in the 

multiple regression model and to choose the best, namely (SEA-LASSO) method and 

(MCP) method. The results showed that the (SEA-LASSO) method outperformed the 

(MCP) method in terms of accessing the real model measured by (PCT),  and 

estimation accuracy, as it achieved the lowest (MSE) in most cases for small samples 

(n = 25) and medium samples ( n = 50) in the first and second levels. 

    The (SEA-LASSO) method is best in the cases of relatively large samples (n = 200) 

in view of the medium and high variance(   1 ,    3)  , regardless of the equality 

or difference in the regression coefficients of the real model variables. 

In the case of very large samples (n = 1000), the MCP method had the lowest (MSE), 

but it did not outperform the (SEA-LASSO) method in terms of access to the real 

model ( PCT ), where the (SEA-LASSO) method had achieved the highest 

percentage. Thus, the (SEA-LASSO) method is considered the best in terms of access 

to the real model (PCT) and in terms of estimation accuracy because it achieved the 

lowest (MSE) in most cases by studying the simulation results. 

We recommend the use of some other variable selection methods such as Group 

Lasso, and other methods of regularization that work on estimating and appropriate 

selection of variables at the same time, addressing the polyline problem, and solving 

other statistical problems 
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 انًضزخهص
                                                                      ___________ 

 

ب فٙ رحهٛم الاَحذاس انخطٙ. يٍ انُبحٛخ انعًهٛخ ، عبدحً يب ٚزى رمذٚى عذد ٚعذ اخزٛبس انًزغٛش         ًً يٕضٕعًب يٓ

كجٛش يٍ انًزُجئٍٛ فٙ انًشحهخ الأٔنٗ يٍ ثُبء انًُٕرج نهزخفٛف يٍ رحٛزاد انًُٕرج انًحزًهخ. يٍ َبحٛخ 

 أخشٖ ، نزعزٚز انمذسح عهٗ انزُجؤ ثبنًزغٛشاد انًًٓخ ٔاخزٛبسْب.

رضٓم ْزِ الإجشاءاد    . V.S))ثزل الإحصبئٌٕٛ جٕٓدًا كجٛشح فٙ رطٕٚش إجشاءاد انزُظٛى نحم يشكلاد       

( عٍ طشٚك رعٍٛٛ يعبيلاد يحذدح إنٗ انصفش ٔرمهٛم رمذٚشاد انًعبيم ، يًب ٕٚفش V.Sرهمبئٛبً الاخزٛبس انًزغٛش )

غٛشاد. فٙ ْزا انجحث ، رى الزشاح طشٚمزٍٛ رمذٚشاد يفٛذح حزٗ نٕ كبٌ انًُٕرج ٚحزٕ٘ عهٗ عذد كجٛش يٍ انًز

نهزُظٛى نزمذٚش ٔاخزٛبس انًزغٛشاد انًُبصجخ فٙ َفش انٕلذ فٙ ًَٕرج الاَحذاس انًزعذد ، ًْٔب أصهٕة 

LASSO ( انًعٛبس٘ انًعذل نهخطأSEA-LASSO ٔ )Minimax Concave Penalty (MCP ٔ )

 .اخزٛبس الافضم

م طشٚمخ رُظٛى رعًم عهٗ انزمذٚش ٔالاخزٛبس انًُبصت نهًزغٛشاد انًًٓخ رشكز يشكهخ انٕسلخ عهٗ اصزخذاو أفض

. نهحصٕل عهٗ SEA-LASSO  ٔMCPفٙ َفش انٕلذ ٔيعبنجخ يشكهخ انخطٛخ انًزعذدح ثبصزخذاو طشٚمخ 

 انًُٕرج انحمٛمٙ.

 ( يٍ حٛث عًهٛخ انزمذٚشMCP( ٔطشٚمخ )SEA-LASSOرٓذف ْزِ انٕسلخ إنٗ رمٛٛى أداء طشٚمخ )     

 ٔالاخزٛبس انًُبصت نهًزغٛشاد انٓبيخ ٔيعبنجخ يشكهخ انخطٛخ انًزعذدح يٍ خلال دساصخ انًحبكبح.

أجشٚذ دساصخ يحبكبح نهًمبسَخ ثٍٛ ْبرٍٛ انطشٚمزٍٛ ٔانزٙ اشزًهذ عهٗ حبلاد يخزهفخ يٍ انعٕايم ٔاخزجبس 

( ٔيعٛبس اخزٛبس λيعبيم انضجظ ) رأثٛش يضزٕٚبد ْزِ انعٕايم عهٗ أداء ْبرٍٛ انطشٚمزٍٛ ، ٔكزنك رحذٚذ لًٛخ

-SEAأفضم لًٛخ نٓب ٔالأصبس انز٘ ٚزى عهٗ أصبصّ رمٛٛى أداء انطشٚمزٍٛ. أظٓشد َزبئج انًحبكبح أٌ طشٚمخ )

LASSO( رزفٕق عهٗ طشٚمخ )MCP ٙيٍ حٛث انُضجخ انًئٕٚخ نهزشغٛم نهٕصٕل إنٗ انًُٕرج انحمٛم )

( MSEٚحمك ألم ) ّ( لأMSEَ) انخطأ يشثعبد ث يزٕصظ ( ، كًب أَٓب أفضم يٍ حPCTٛانًمبس ثٕاصطخ )

 .Rفٙ يعظى انحبلاد. رى اصزخذاو دساصخ يحبكبح يع ثشَبيج 

 

-Multiple regression model , Adjusted Adaptive LASSO (SEAانكهًبد انشئٛضٛخ: ، 

LASSO), Minimax Concave Penalty (MCP). 

 


