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Abstract

Al/PANI-MWNT/Au-Plastic Schottky diode solar
cells were fabricated by the electrochemical
polymerization technique to make polyaniline films on
the top of gold nanoparticles film. The aluminum
contact was deposited by thermal evaporation. The
electro-optical characteristics of these devices
produced at the different polymerization time were
compared. Here, we achieved the highest ever reported
open-circuit voltage of 0.8 V with the electrochemical
polymerization technique. The polymerization of
polyaniline films was thought to be a major factor in
the enhanced performance. The effects of varying the
polyaniline thickness on the device performance were
investigated.

Introduction

Conjugated polymers exhibit conducting or
semiconducting properties. Semiconducting polymers
are now attracting considerable attention as promising
materials for the development of optoelectronic
devices such as light emitting diodes, photovoltaic
cells, and nonlinear optical systems. The development
of plastic electronics into a well-established technology
is a goal currently pursued by many research groups
worldwide (Peumans et al. 2003, Hill et al. 2000). The
success of plastic electronics depends critically on
significant improvements in devices based on organic
semiconductors (Forrest 2004, Yang et al. 2005).
Organic semiconductors like poly (3-hexylthiophene)
(P3HT), polypyrrole, and polythiophene are finding
more and more applications in many optoelectronic
devices including light-emitting diodes (Singh et al.
2005, Singh et al. 2006), and solar cells (He et al.
2006).

The metal/organic semiconductor Schottky
junction as an alternate to the metal/inorganic
semiconductor junction has been developed (Kwong et
al. 2003, Rajaputra et al. 2007), which has opened the
new possibility of replacing conventional inorganic
devices by organic ones (Takada et al. 2002, Su et al.

2007). Among conducting polymers, Polyaniline
(PANI) has received greater attention due to its
advantages over other conducting polymers. The
simplicity of its preparation from cheap materials,
superior stability to air oxidation, controllable
electrical conductivity by doping, and reversible
electrochromism (Kobayashi et al. 1984) make it very
useful in preparing lightweight batteries (Oyama et al.
1995), electrochromic devices (Yang et al. 1994),
sensors (Shinohara et al. 1988) and electroluminescent
devices (Gustafsson et al. 1992). PANI-based solar
cells are of interest because of their potential as
flexible, lightweight and inexpensive devices. High
open-circuit voltages have been obtained in Schottky
diode solar cells manufactured by electrochemical
polymerization (Singh et al. 2009). However, short-
circuit current densities (Isc) in these cells are not as
good as in most other organic semiconductor cells
(OSC). The major reason for low Isc in the organic
semiconductor cells is the small exciton diffusion
length of a few nm.

In this paper, we investigated a new type of
Schottky diode solar cells based on electrochemical
polymerization of PANI films, which exhibits the
highest open-circuit voltage of 0.8 V to date. It was
found that the addition of multi-wall carbon nanotubes
(MWNTs) into PANI would form PANI-MWNT
composite, which can lead to significant improvement
in photovoltaic conversion efficiency.

Methods

Aniline monomer was distilled under reduced
pressure before use. Aniline monomer was mixed to a
final concentration of 0.1 M in 1 M sulfuric acid with
total volume equal to 40 ml. The polyaniline was
synthesized by galvanostatic step method at a constant
voltage of 2 V. The working electrode was plastic film
with a thin 30 nm Au layer with surface area of 1.5
cm2. A paper clip was used as a counter electrode. The
amount of the electrodeposited polyaniline was
estimated by weighing the working electrode before
and after the electrodeposition. Figure 1 displays the
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Figure 4. Absorption spectra of the polyaniline/gold sheet for
different polymerization times.

transitions between band-polaron band and the one at
900 nm is due to the polaron band-π* band transitions. 
The UV-Visible spectra indicate that there is a single
broad polaronic band deep in the band gap of the PANI
nanofiber. It has been proposed that the presence of
coulombic interactions, dielectric screening and local
disorder in the polyaniline lattice act to stabilize the
delocalized polaron state. The UV-results indicate the
formation of a polaronic band in between the band gap
of the polymer upon doping. It is observed that the
peak attributed to the π-polaron band transition at 430 
nm intensifies with the increase in dopant
concentration. This is due to the fact that with the
increase in dopant concentration, the density of the
localized defect states increases in the polaronic band.
This leads to an increase in the density of charge
carriers and as such the direct current conductivity of
the polyaniline nanofibers increases with the increase
in dopant concentration.

Photoluminescence
The Photoluminescence (PL) spectra of the PANI

nanofibers were taken with an exitonic wavelength of
228 nm, using a Perkin Elmer Ls-55 fluorescence
spectrometer. Figure 5 shows the PL spectra of the
PANI nanofibers. All the curves show a common peak
at around 580 nm. The UV-Visible spectra in the
Figure 5 indicate a single broad polaronic band at
around 450 nm, which is due to transitions from the
polaronic band to the π-band (HOMO) and therefore 
the PL peak at 450 nm intensifies. The increase in
intensity of the PL peaks can also be attributed to the
reduction of diameter of nanofibers.

Figure 5. The photoluminescence spectra of PANI and PANI-
MWNT composites.

The I-V characteristics of gold/PANI Schottky diode
solar cells

Dark I-V characteristics of the gold/PANI Schottky
diode heterodiode shown in Figure 6 exhibit a
rectifying behavior with a rectification of 1.39 at 0.72
V (rectification stands for the ratio of the forward to
reverse current at a certain bias voltage). The rectifying
behavior indicates the formation of a diode between
gold thin film and PANI p-type film. The reverse
current of this diode illustrates a gradual increase. The
forward current shows an exponential behavior of the
form:











nkT

qV
expII o (1)

Where Io is the saturation current, V is the bias voltage,
q/kT is the thermal energy and n is the ideality factor.

Figure 6. The dark I-V characteristic curve of gold thin film /PANI
Shotcky diode.
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The dark semi-log I-V curve of the gold/PANI
Schottky diode device (Figure 6) exhibits a linear
behavior in the bias region of 0.05-0.1691 V. The
empirical equation of this diode is:

 nVI /87.8exp107.1 4 (2)

The equation shows an extrapolated saturation current
of 1.7×10-4 A, while the ideality factor that is
calculated from this equation is 5.4. The high value of
n suggests that the carrier transport of this device is
dominated by more than one mechanism.

The J-V characteristics of the gold thin film/PANI
thin film solar cell exhibits considerable photovoltaic
performance as depicted in Figure 7, with short circuit
current density (ISC), open circuit voltage (VOC) and
fill-factor (FF) for different polymerization time in the
Table 1. The highest conversion efficiency of the cell is
0.25% for 3 min polymerization time, indicating a
significantly considerable performance.
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Figure 7. I-V characteristics gold thin film/PANI at different
polymerization time.

Table 1. The photovoltaic performances of the gold
thin film /PANI with different polymerization time.

Polymerization
time (min)

Isc

(mA/cm2)
Voc

(Volt)
FF Efficiency

(%)

1min 0.035 0.82 0.10 2.6 ×10-2

2 min 0.060 0.69 0.16 6.7 ×10-2

3 min 0.204 0.41 0.29 2.5×10-1

4 min 0.136 0.26 0.23 7.9 ×10-2

5 min 0.017 0.19 0.25 0.8 ×10-2

The Al/PANI-MWNT/Au-Plastic Schottky devices
The electrochemical polymerization method can

aid the formation of very good omic contact. The
optimum condition to obtain high photovoltaic
conversion efficiency for polyaniline on the gold foil is
at a polymerization time of 1 min.

As seen in Figure 8, the PANI-MWNT composite
can alter the photovoltaic performance as compared to
those made of PANI itself. For instance, when the
MWNT concentration is 5%, the Voc is 0.45V and FF
improves more significantly from 0.1 to 0.51, and the
total conversion efficiency increases from 0.03% to
0.31%. Adding MWNT material can tune the
performance of Schottky solar cells. The synthesis by
in situ polymerization processes leads to effective site-
selective interactions between the quinoid ring of the
PANI and the MWNTs, and the formation of a genuine
PANI-MWNT composite. This facilitates charge
transfer processes between the two components and
results in enhanced electronic properties (Maser et al.
2003). According to other studies, (Su et al. 2007) the
electrical conductivity of a dedoped PANI-MWNT
composite with a 16.3 wt % concentration of MWNTs
reached 3.0 × 10−3 S/cm, which was 6 orders of
magnitude higher than that of dedoped PANI nanorods.
The coexisting composites of PANI nanorods and
MWNTs coated with PANI had high electrochemical
activity and good cyclic stability.
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Figure 8. I-V characteristics of Al/PANI-MWNT/Au-Plastic
Schottky devices.

Conclusions

In brief, we fabricated plastic/gold/PANI/Al
Schottky diode solar cells and Al/PANI-MWNT/Au-
Plastic devices by electrochemical polymerization of
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PANI on the evaporated gold on the plastic foil. The
solar cell exhibited highest Voc values of 0.8V after 1
min electrochemical polymerization of PANI. With
proper concentration of MWNT in the PANI-MWNT
composite, the plastic/gold/PANI-MWNT/Al solar cell
can reach efficiency above 0.31%.
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