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Abstract: The bilateral filter (BF) is a non-linear filter that spatially smooths images with awareness of large structures such as
edges. The level of smoothness applied to a pixel is constrained by a photometric weight, which can be obtained from the same
image to be filtered (in case of the original BF) or from a guided image (in case of the joint/cross BF). In this study, the authors
propose a new filter called the semi-guided BF which is derived from solving a non-linear constraint least square problem. The
proposed filter's photometric weight incorporates information from the image to be filtered and the guided image. They propose
a fast implementation of the filter based on layer approximation. They also study the iterative application of the proposed filter
and show that the filter can preserve large structures while smoothing out small structures. This makes the proposed filter an
efficient and effective tool for structure-aware image smoothing. Experimental results have demonstrated that performance of
the proposed filter is comparable to those of the state-of-the-art algorithms.

1 Introduction
The bilateral filter (BF) is an edge-aware image smoothing
technique in which it blurs small details such as noise or
fragmented contours while preserving large textures such as edges.
It was first developed by Aurich and Weule [1] in the form of a
non-linear Gaussian filter, and was then reformulated with the
name BF by Tomasi and Manduchi [2]. The key idea of the BF is
to add to the standard Gaussian low-pass filter an extra photometric
weight. This extra weight results in less smoothing in pixels with
significant intensity difference. A number of works have been
developed to utilise the BF in various image processing and
computer vision applications, such as image denoising [2], detail
enhancement [3], tone management [4, 5], stylisation [6], haze
removal [7] and interpolation [8, 9].

The origin, interpretation, extension and fast implementation of
the BF have been intensively studied. As mentioned in [10, 11], the
BF can be derived from the result of a robust estimation. It is also
related to anisotropic diffusion [12] and weighted least square
(WLS) [13]. The connection between the BF and anisotropic
diffusion is also studied in [14] in the context of adaptive
smoothing. In addition to the original formulation, the BF has been
modified in different ways and extended to enhance its
performance based on particular applications, such as double BF
[15] and recursive bilateral filtering [16]. The computational
complexity of the BF has also been improved by its fast
implementation methods including polynomial techniques [17, 18],
layered approximation [4], bilateral grid [19] and distributive
histograms [20].

An important extension of the BF is the joint BF which is
applied in the context of digital photography [21]. In this
application, the photometric weight for a no-flash image is
obtained from a flash image. Using a similar approach, Eisemann
and Durand [22] renamed the filter cross BF (CBF). The original
BF is a special case of the CBF when the photometric weight is
computed from the same image to be filtered. The CBF has been
applied in many image processing applications such as dehazing
[23], stereo matching [24, 25], image fusion [26] and texture
suppression [27].

The CBF has been extended for scale-aware image smoothing
by Zhang et al. [28] in which it is called the rolling guidance filter
(RGF). The key idea of the RGF is to first smooth out the input

image by a Gaussian low-pass filter, and then apply an iterative
CBF to the same input image in which the photometric weight is
derived from the previous filter output. This process will smooth
out small structures and recover edges of large structures
progressively.

Motivated by the success of the BF and its extensions, in this
work, we first formulate the optimisation problem for the image
filtering as a non-linear constraint least-square problem and then
derive its iterative solution based on the strategy of alternating
optimisation [29]. The first iteration is called the semi-guided BF
(SBF). The key idea of the SBF is to derive the photometric weight
not only from one image but also from different images. This
allows the SBF to exploit information from both images.
Especially, when applied iteratively the proposed filter has an
important property which preserves the shapes of edges while
smoothing small structures.

The key contributions and organisation of this work is
summarised as follows. In Section 2, we briefly review related
work regarding to the BF and its extensions. In Section 3, we
formulate the image filtering problem as a non-linear constraint
least-square problem and derive an iterative solution. The fast
implementation for the first iteration is proposed. We then study
the characteristics of the iterative application. In Section 4, we
present experimental results of the proposed filter in the context of
structure-aware image smoothing and image decomposition based
applications. In the final section, we present concluding remarks.

In the remaining of this paper, we use the following notations.
Let I, G and Y be the original image, the guided image and the
processed image, respectively. We use the subscript to indicate the
pixel location, e.g. the pixel of the image I at location p is denoted
as Ip. A neighbourhood of a pixel p is denoted as Ωp. N is the
number of pixels in an image. We also define a weight function
wσ(x) = exp[ − x2/σ]. A normalisation factor Cp for the filtering
process of pixel p is defined as
Cp = ∑q ∈ Ωp

ws( | | p − q | | )wr( | Ap − Bq | ), where | | p − q | | is the
Euclidean distance between the two pixel locations p and q, A and
B are a pair of images which will be defined accordingly.
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2 Related work
2.1 BF and optimisation problem

The BF is defined as

Y p = 1
Cp

∑
q ∈ Ωp

ws( | | p − q | | )wr( | Ip − Iq | )Iq (1)

Many studies [10, 11, 30] have shown that the BF can be
interpreted from a robust estimation point of view. Paris et al. [30]
pointed out that the BF is a solution of the following optimisation
problem:

Y p = arg min
Y p

∑
p ∈ N

(Y p − Ip)2 + ∑
q ∈ Ωp

Φ(Y p − Yq) (2)

where Φ is the error norm. The key idea in (2) is to minimise the
difference between the input and output while enforcing local
smoothness. The BF is the result of this optimisation when
Φ(x) = wσ(x). Different variants of the BF can be obtained with
other Φ functions. A study of possible Φ functions can be found in
[30].

Elad [10] proposes a local minimisation problem which is
reformulated by Caraffa et al. [11] as

Y p = arg min
Y p

∑
q ∈ Ωp

ws( | | p − q | | )Φ((Y p − Iq)
2) (3)

The BF is resulted from the first iteration of gradient descent of
the above optimisation with Φ(x) = wσ(x) and Y (0) = I. The key
idea in (3) is to minimise the residual errors between a pixel in the
output and a local neighbourhood in the input.

2.2 CBF and optimisation problem

Initially proposed by Petschnigg et al. [21] and later revisited by
Eisemann and Durand [22], the CBF is an extension of the BF in
which the photometric weight wr is computed from a guided
image. The CBF is defined as

Y p = 1
Cp

∑
q ∈ Ωp

ws( | | p − q | | )wr( |Gp − Gq | )Iq (4)

The CBF is the close form solution of the following
optimisation problem:

Y p = argmin
Y p

∑
q ∈ Ωp

ws( | | p − q | | )wr( |Gp − Gq | )(Y p − Iq)
2

(5)

The key idea in (5) is to minimise sum of weighted square
difference between the filter output Y p and a input pixel Iq within
neighbourhood Ωp. The first weight ws( | | p − q | | ) is the spatial
constraint. The second weight wr( | |Gp − Gq | | ) is a constraint
using the information from the guided image which is physically
related to the image to be filtered. The original BF is a special case
of the CBF when G = I. The CBF was initially used in flash/no-
flash applications. It was later extended in other applications such
as scale-aware image smoothing [28] and edge-aware texture
suppression [27].

2.3 Iterative application of BF and CBF

In this section, we study the formulations and properties of the BF
and CBF when they are applied iteratively. Let Y (k) denote the
filtering output of an iterative filter at kth iteration (k ⩾ 0).

• The iterative BF (IBF) is defined as

Y p
(k + 1) = 1

Cp
∑

q ∈ Ωp

ws( | | p − q | | )wr( |Y p
(k) − Yq

(k) | )Yq
(k)

(6)

where Y (0) = I.
As proven in [10, 14], the BF can be regarded as a non-

iterative form of an anisotropic diffusion. This implies that when
the BF is applied iteratively, it tends to diffuse the input image
progressively and it eventually leads to a piecewise constant
signal. However, due to the constraint of the photometric
weight, the diffusion occurs simultaneously with the process of
sharpening the edges. This effect is demonstrated in Fig. 1 for a
one-dimensional (1D) signal containing a small, a medium and a
large structure. The IBF can remove small structures by
increasing the number of iterations. However, this also leads to
oversharpened edges of medium and large structures. The
experiment on an image is shown in Fig. 2 in which the iterative
outputs have a cartoon look due to the oversharpening effects.
This makes the IBF suitable for segmentation based
applications, such as texture separation [30], image and video
abstraction [6].

• The iterative CBF is defined as

Y p
(k + 1) = 1

Cp
∑

q ∈ Ωp

ws( | | p − q | | )wr( |Y p
(k) − Yq

(k) | )Iq (7)

where Y (0) = 0 (a completely black image).
Zhang et al. [28] exploited the CBF to set up an iterative

filter for scale-aware image smoothing. They named their filter
as RGF. The effects of RGF depend on the initialised value of
Y (0). Experiments of different settings of Y (0) can be found in
[28]. The important property of RGF can be shown in the case
Y (0) = 0 which effectively uses a Gaussian low-pass filter in the
first iteration. This process removes small structures and blurs
edges of large structures. However, these edges can be recovered
when the number of iteration is increased while small structures
remain flat as in the first iteration. This behaviour on a 1D signal
is demonstrated in Fig. 1 which shows that the RGF has similar
oversharpening effect to large edges as that of the IBF. However,
unlike the IBF, there is no diffusion occurring in the RGF along
with the process of recovering edges. This makes the RGF
converge to a signal that contains both medium and large
structures having straight edges. The effect of the RGF on a real
image is shown in Fig. 2. Due to this important property, the
RGF can be utilised in a number of applications, such as scale-
aware image smoothing [28], texture separation, detail
enhancement and image abstraction (Fig. 3).

3 Semi-guided BF
3.1 Problem formulation and general solution

Inspired by the derivation of BF studied in [10, 11, 30], the
proposed filter is formulated as the solution to the following
optimisation problem:

Y p p ∈ N = arg min
Y p

∑
q ∈ Ωp

ws( | | p − q | | )wr( | Ip − Yq | )Φ(Y p − Yq)

(8)

where the term Φ(Y p − Yq) enforces local smoothness in the
output, the term wr( | Ip − Yq | ) is used to constrain the distance
between a pixel in the input image and all pixels in a corresponding
neighbourhood in the output, and ws( | | p − q | | ) is a spatial
constraint.

We apply the strategy of alternating optimisation [29] to
determine the solution for the optimisation. Suppose after kth
iteration, we have an image Y (k). At the next iteration, we fix Yq

(k)

when solving for Y p. Equation (8) then becomes

2 IET Image Process.
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Y p p ∈ N = arg min
Y p

∑
q ∈ Ωp

ws( | | p − q | | )wr( | Ip − Yq
(k) | )Φ(Y p

− Yq
(k)) (9)

The solution satisfies the following equation:

∑
q ∈ Ωp

ws( | | p − q | | )wr( | Ip − Yq
(k) | )Φ′(Y p − Yq

(k)) = 0 (10)

Fig. 1  Illustration of the effects of IBF (left column), RGF (middle column) and ISBF (right column) on a 1D signal. The first row is the original signal and
the following rows are iteratively filtered signals. The two parameters σs and σr are the same for all filters

 

Fig. 2  Example of IBF (top row), RGF (middle row) and ISBF (bottom row) on a real image. The two parameters are set as σs = 3.5 and σr = 0.1 for all three
filters. From top to bottom: IBF, RGF and ISBF. From left to right: 1 iteration, 5 iterations, 9 iterations and 13 iterations

 

Fig. 3  One horizontal line extracted from input image and images in last column of Fig. 2
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where Φ′ is the first derivative of Φ with respect to Y p.
Let x = Y p − Y p then Φ(x) represents the local smoothness cost

in the filtered image. This cost is an increasing function of the
intensity difference x. Also, in the homogeneous region (x = 0), the
cost is minimal (Φ(x) = 0). Based on this characteristics of the
function Φ(x), in this work we study a particular case when
Φ(x) = (1/2)x2. Solving (10), we have the solution at (k + 1)th
iteration as

Y p
(k + 1) = 1

Cp
∑

q ∈ Ωp

ws( | | p − q | | )wr( | Ip − Yq
(k) | )Yq

(k)
(11)

3.2 One iteration and its fast implementation

When Y (0) = G the first iteration of (11) becomes

Y p = 1
Cp

∑
q ∈ Ωp

ws( | | p − q | | )wr( | Ip − Gq | )Gq (12)

where the iteration index is omitted to simplify the notations.
The photometric weight of this filter is obtained from the image

to be filtered and a guided image. For these reasons, the proposed
filter is called the semi-guided BF (SBF). The BF is a special case
of the SBF when G = I.

To unify BF related filters, we define a generic filter function
ψ(I, A, B) that takes three inputs, including an image to be filtered I
and two guided images A and B. The filter output at pixel p is
defined as

ψ p(I, A, B) = 1
Cp

∑
q ∈ Ωp

ws( | | p − q | | )wr( | Ap − Bq | )Iq (13)

The function ψ  can be used to represent the BF, CBF and SBF
as shown in Table 1. 

A direct implementation for the filter function ψ(I, A, B)
consists of two nested loops for p and q. This is the same as the
brute-force implementation of the BF. As outlined in [30], the
complexity of brute-force BF implementation is 𝒪( | N |2 ). Due to
the characteristics of the Gaussian filter, the spatial weight is
significantly smaller when the spatial distance between two pixels
are greater than 2σs, where σs is the variance of the spatial
Gaussian filter. Consequently, the neighbourhood pixel q can be
restricted to as | | p − q | | ≤ 2σs. This reduces the complexity to
𝒪( | N |σs

2).
We develop a fast algorithm based on the fast implementations

of the BF. As summarised in [30], the fast BF includes separable
kernel [31], local histograms [20], layered approximation [4] and
bilateral grid [19]. Among these techniques, layered approximation
and bilateral grid are widely used for their accuracy and fast
computational time [19, 30]. The key idea of these two techniques
is to subsample the image along the intensity axis and downsample
in the spatial domain.

Following the idea of layered approximation outlined in [4, 30],
our algorithm consists of three main steps. We first subsample the
intensity range of image B into n different values denoted as im,
where m = 1, . . . , n. For each im, we compute a corresponding
layer Lm such that its value at pixel p is computed as
Lm(p) = wr( | Ip − im | )Ip. In the second step, we convolve each
layer Lm with the spatial kernel gσs

 and the result is normalised to
form a new layer L̄m that contains exact results of ψ(I, A, B) for
pixels with an intensity equal to im. In the last step, we perform a
linear interpolation between Lm1 and Lm2 to obtain results of the

filter at location p in which the two closest subsampled values to
Ap are im1 and im2.
 
Algorithm: Fast implementation of the generic filter function
ψ(I, A, B)
Inputs:

• Image I, guided images A and B.
• Gaussian parameters σs and σr. Number of layers n.

Output: Y

1. Subsample n values (im where m = 1, . . . , n) from min(B) to
max(B) and build n layers as

Lm(p) = wr( | Ip − im | )Ip

2. Let gσs
 and gσr

, respectively, be the spatial and intensity kernel
of a Gaussian filter with variances σs and σr. Let ÷ denote a
per-pixel division. Further denote the sum of the weights at
each pixel as gσs

⊕ gσr
. Convolve each layer Lm with the spatial

kernel gσs
 and normalise the result as

L̄m = gσs
⊗ Lm ÷ gσs

⊕ gσr

3. For each pixel p in image A, find the two closest values im1 and
im2 and perform a linear interpolation to obtain the result as

Y p =
Ap − im1

im2 − im1
× L̄m2 +

im2 − Ap
im2 − im1

× L̄m1

Since we follow the same structure of the layered
approximation to implement our filter, our implementation has the
similar complexity as outlined in [30] which is
𝒪 |N | + ( | N | /σs

2)( |R | /σr)  where N and R are, respectively, the
number of pixels and intensity range of image I. However, in our
proposed generic filter, we subsample the guided image B instead
of image I, such that R is the intensity range of image B.

3.3 Iterative algorithm and its property

Equation (11) represents the formulation of our iterative SBF
(ISBF) where Y (0) = I. In order to exploit the fast implementation
of ψ(I, A, B) in iterative ways, we set up the IBF, RGF and ISBF as
following:

• IBF

Y (k + 1) = ψ(Y (k), Y (k), Y (k)) (14)

where Y (0) = I.
• RGF

Y (k + 1) = ψ(I, Y (k), Y (k)) (15)

where Y (0) = 0.
• ISBF

Y (k + 1) = ψ(Y (k), I, Y (k)) (16)

where Y (0) = I.

The block diagram of these algorithms is shown in Fig. 4. 
In order to study the effects of the proposed ISBF, we

experiment on the same 1D signal used for the IBF and the RGF as
shown in Fig. 1. For a subjective comparison, the parameters σs
and σr are kept the same for all three filters.

Suppose that p is the pixel to be filtered and q is its
neighbourhood. The photometric weight wr of the pixel q at kth

Table 1 Relation of ψ to the BF, CBF and SBF
BF (1) CBF (4) SBF (12)
Y p = ψ p(I, I, I) Y p = ψ p(I, G, G) Y p = ψ p(G, I, G)
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 iteration is a decreasing function of |Ip − Yq
(k)|. The role of the

photometric weight wr is to control the smoothing level caused by
a Gaussian filter characterised by a spatial weight ws. Since
Y (0) = I, the ISBF begins by filtering the image with a BF that
produces a smoother version of the input I. This implies
|Ip − Yq

(1) | < | Ip − Yq
(0)| which leads to |Y p

(2) | < |Y p
(1)|. The same effect

can be observed when the number of iterations is increased.
Consequently the level of sharpness of iterative outputs is
decreased, which can be represented as
Y (k) < Y (k − 1) < ⋯ < Y (1) < Y (0) = I. In addition, the level of
smoothness depends on the size of structures. For example, small
structures tend to be smoothed out faster than large structures.
Hence, large structures can be preserved if the filter is stopped at
an appropriate iteration. This effect is shown in Fig. 1 in which the
proposed filter can progressively remove small structures without
sharpening large edges. The filtering result of the proposed filter on
a real image is shown in Fig. 2 in which small furs on the cat face
are smoothed out progressively while the resultant images look
naturally. A plot of one horizontal line extracted from the results of
this experiment is presented in Fig. 3 which shows the difference in
the filtering results by using the IBF, RGF and the proposed ISBF.

3.4 Parameters settings and convergence

3.4.1 Parameters settings and filtering results: An important
property of the proposed filter is to smooth an image at different
speed depending on the size of structures. This property is
characterised by two parameters σs and σr. Similar to the BF, the
role of σs in the proposed filter is to determine the spatially
smoothing level. A neighbourhood pixel has more contribution on
filtering the central pixel at larger value of σs. In addition, the role
of wr (a decreasing function of σr) is to reduce the smoothing
effects applied to pixels with large intensity variation usually
locating at edges. By selecting a smaller value of σr, the large
edges can be retained in the first iteration. However, this requires

more iterations to smooth out small structures. These effects are
demonstrated in Figs. 5 and 6 for a 1D signal and a real image,
respectively. In order to preserve edges, the two parameters need to
be set to values such that the desirable structures are retained in the
first iteration because the ISBF does not recover edges. It then
depends on a particular application to adjust σr to an appropriate
value. For example, σr should be increased if less iterations are
required in small structure removal applications. 

3.4.2 Convergence: Due to the smoothing process, the proposed
filter eventually converges into a piecewise constant signal (an
image having same intensity value for all pixels). Since the
convergent result of the ISBF does not contain valuable
information, we only study its convergent or smoothing speed.
Knowing the convergent speed of the filter can be useful when
determining the number of iterations for a particular application.

The ISBF produces progressively smoother versions of the
original input image. This implies that the amount of small textures
contained in the output at an iteration is less than that of in the
output at the previous iteration. In addition, the convergent speed is
mainly determined by small textures as they are smoothed out
faster than large structures. As a result, when the number of
iterations is increased, the variation between outputs of two
successive iterations decreases. The sum of square difference
(SSD) between two adjacent iterations is shown in Fig. 7. The
figure also demonstrates that the SSD of the first iteration depends
on the σs and σr for the first bilateral filtering process. Our
empirical experiments have shown that after about 15 iterations,
the variation of outputs between two successive iterations is
visually unrecognisable. 

4 Applications and results
In this section, we first highlight the important property of our
ISBF filter in the context of structure-aware image smoothing. We

Fig. 4  Block diagram of the IBF, the RGF and the proposed filter ISBF. Z−1 denote a delay function. The filter function ψ(I, A, B) is defined in (13)
 

Fig. 5  Effect of setting different values of σs and σr on ISBF filtering results for a 1D signal. The first row is the input signal, the following rows are filtering
outputs
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then demonstrate its effective applications based on image
decomposition.

4.1 Structure-aware image smoothing

As discussed above, the proposed ISBF can remove small
structures iteratively while maintaining natural shapes of edges of
the remaining structures. Also, by adjusting its parameters, the
proposed ISBF can eliminate structures at different scales. These
properties make the proposed filter an effective tool for structure-
aware image smoothing in which both sharp edges and large
structures are preserved. These properties are demonstrated in the
following three experiments in which the proposed filter is
compared with the state-of-the-art filters, including guided image

filtering (GIF) [32], domain transform (DMT) [33], gradient
minimisation (L0) [34], WLS [35], Bayesian model averaging
(BMA) filter [36] (GIF is proven to be a special case of BMA
filter), BM3D [37] and relative total variation (RTV) [38].

In the first experiment which is shown in Fig. 8, the input image
contains a number of stars at different scales. Its background also
has different colours blended together naturally. This experiment
aims to remove tiny stars while keeping the stars with significant
sizes. Small stars have similar brightness as the big stars. Due to
the effects of small structures removal, large stars are blurred in the
edge-aware filters, such as BMA, BM3D, DMT and WLS.
Conversely, scale-aware filters, such as L0, RGF and RTV can
preserve sharpness of large stars. However, the background is
unexpectedly segmented by these filters. On the contrary, due to
the property of removing small structures without sharpening
edges, our filter produces the desirable result such that small stars
are removed, big stars maintain their sharpness and background has
pleasant colour transition. As discussed in Section 3.4, since the
purpose of this experiment is to remove small stars the σs would be
set to a big value; however, in order to minimise the blur effects on
big stars the value of σs cannot be too big. Also, the convergent
iteration is empirically experimented to be about 15 iterations for
most images. Consequently, the σs, σr and number of iterations for
this experiment are set to 3.5, 0.1 and 10 iteratively, respectively. 

In the second experiment which is shown in Fig. 9, we
demonstrate the effectiveness of the ISBF in background
smoothing applications. It is sometimes required to smooth the
background of images to highlight the important information
conveyed in the foreground. However, smoothing the background
is often at the cost of losing details or sharpness in the foreground.
In this experiment, we purposely adjust parameters of all filters to
produce outputs such that the background is smoothed while
keeping important information of the foreground. As can be seen in
Fig. 9, our filter effectively smooths out the background while
retaining details and sharpness in the foreground. Other methods
tend to flatten details in the foreground or reduce the overall
sharpness. In order to increase the smoothness level of the

Fig. 6  Effect of setting different values of σs and σr on ISBF filtering results for a real image. Top row: σs = 8.5, σr = 0.05. Middle row: σs = 3.5, σr = 0.05.
Bottom row: σs = 3.5, σr = 0.15. From left to right: 1 iteration, 5 iterations, 9 iterations and 13 iterations

 

Fig. 7  SSD between outputs of two successive iterations for the image in
Fig. 6
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background, in this experiment the σs is increased to 6.5 compared
to that of 3.5 in the first experiment. 

In the third experiment, we aim to demonstrate the performance
of the proposed filter in terms of smoothing noise while preserving
important edges. For a subjective assessment, parameters of all
filters are tuned such that they produce similar peak signal-to-noise
ratio (PSNR) values. The experimental results are shown in Fig. 10
in which the proposed filter produces competitive results in
comparison with other state-of-the-art edge-aware image filters. 

The computational time of the all filters in these two
experiments is presented in Table 2. By exploiting the fast
implementation of a single iteration iteratively, the ISBF has
competitive running time in comparison with other state-of-the-art
filters. 

4.2 Image decomposition based applications

Image decomposition is a process of separating an image into a
piecewise smooth base layer and one or more detail layers. The
base layer contains large structures with significant variations in
intensity. Edge-aware smoothing operators are often used to extract
the image base layer. The difference between the original image
and the base layer defines the detail layer. These layers are used in
various photographic applications including detail manipulation,
pencil sketching and texture and details transfer. The following
experiments demonstrate effectiveness of the proposed filter in
image decomposition based applications.

4.2.1 Detail manipulation: Fattal et al. [39] proposed a method to
employ BF-based image decomposition for shape and detail
enhancement. Their method produces a sequence of outputs which

Fig. 8  Scale-aware smoothing results. Parameters are adjusted such that tiny stars are removed while big stars are retained. From left to right and top to
bottom: input, BMA (r = 9, σs = 0.0001), BM3D (σs = 30), DMT (σs = 5.5, σr = 1.0, 5 iterations), WLS (λ = 2.5, α = 1.0), L0 (λ = 0.1), RGF (σs = 3.5,
σr = 0.05, 5 iterations), RTV (λ = 0.002, σ = 3, 3 iterations), our method (σs = 3.5, σr = 0.1, 10 iterations)

 

Fig. 9  Background smoothing results. All filters are tuned for their best performance in terms of background smoothing. From left to right and top to bottom:
input, BMA (r = 25, σs = 0.00005), BM3D (σs = 250), DMT (σs = 20.5, σr = 1.5, 5 iterations), WLS (λ = 2.5, α = 1.5), L0 (σs = 0.075), RGF (σs = 9.5,
σr = 0.05, 5 iterations), RTV (λ = 0.05, σ = 3, 3 iterations), our method (σs = 6.5, σr = 0.1, 7 iterations)
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contain details in different scales. Farbman et al. [35] improved
this method with the use of their WLS edge-aware filtering
technique. The decomposition results in different layers at
progressively finer scales are obtained by taking difference
between the two outputs of the WLS filter at successive iterations.
Using a similar approach, we apply our filter to manipulate image
details at different scales. Let Y (0), Y (1), . . . , Y (k) denote
progressively smoother versions of an image I and Y (0) = I. The
detail layers are obtained as d(i) = Y (i) − Y (i + 1) which can be
manipulated individually to produce a sequence of detail layers. An
example of fine-scale detail enhancement is shown in Fig. 11
which demonstrates that the proposed filter produces similar result
as that of Farbman et al. [35] at faster computational time. 

4.2.2 Image stylisation: Image stylisation transforms a real image
into a non-photorealistic image. The base layer is utilised together
with other image information. For example, edges or gradients can
be added to the base layer to produce cartoon-like or pencil-like
images, respectively. Lu et al. [40] exploited image gradients to
generate pencil drawing effects. The resultant of pencil drawing
can be visually unpleasant due to the appearances of fragmented
contours. In order to eliminate the undesirable gradients, image
smoothing is applied to the input image prior to generating its
pencil sketch. Fig. 12 shows pencil drawing effects using our filter,
the BMA and L0 filters. The figure demonstrates that the image
resulted from our filter has more details than that of BMA and L0
filters and has higher contrast than that of BMA and L0 filters. 

Fig. 10  Edge-aware image filtering results. All filters are tuned to produce similar PSNR. Top row, from left to right: input, BMA mode 3 (r = 3,
σs = 255 × 10−6, PSNR = 30.41), GIF (ϵ = 0.0105, ω = 11, PSNR = 30.43), our method (σs = 4.5, σr = 0.1, 5 iterations, PSNR = 30.40). Middle and bottom
row are close-ups of corresponding images in the top row

 
Table 2 Running time (seconds) of experiments on images in Figs. 8 and 9. All algorithms are implemented using MATLAB
and run in a 3.6 GHZ Intel processor
Image Method

BMA BM3D DMT WLS L0 RGF RTV ISBF
stars (0.48 MB) 0.20 2.13 13.05 2.53 1.40 1.35 1.72 2.35
leopard-lion (0.38 MB) 0.14 1.83 8.61 1.70 1.00 0.60 2.56 0.78

 

Fig. 11  Detail enhancement based on multi-scale image decomposition. The running time (seconds) of Farbman et al. [35] and our method are 2.48 and
0.36 s, respectively
(a) Input, (b) Farbman et al. [35], (c) Our result
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4.2.3 Flash/no-flash detail transfer with denoising: Petschnigg
et al. [21] proposed a technique to use a pair of images for
applications in detail transfer with denoising. They observed that
the no-flash image of a low-light environment contains important
ambient illumination information, whereas the flash image of the
same scene contains valuable amounts of details. Their method was
to compose base layer of the no-flash image with detail layer of the
flash image. Consequently, the resultant image has less noise than
the no-flash image. It also contains more natural scene illumination
than the flash image. They exploited the BF and CBF to extract
base layer and detail layer, respectively. In this experiment, we
utilise our ISBF filter for both base layer and detail layer
extractions. As shown in Fig. 13, our result has better visibility in
shadow areas and sharper edges than that of the Petschnigg et al.'s
result. 

5 Conclusion
In this paper, we have formulated the image filtering problem as a
non-linear constraint least square problem and used the strategy of
alternating optimisation to derive a new filter called the ISBF. One
iteration of the proposed filter is called the SBF for which we have
developed a fast implementation based on the idea of layer
approximation. We have presented a detailed study of the important
property of our filter in image smoothing with respect to shapes of
structures. We have tested the proposed filter and compare its
performance with those state-of-the-art filters in a number of
applications. Experimental results show that the proposed filter is
an efficient and effective alternative tool for a wide range of
applications.
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