
Journal of Physics: Conference Series

PAPER • OPEN ACCESS

Flow Optimization in Dynamic Networks on Time
Scales
To cite this article: Ahmed Kamil Abraheim et al 2021 J. Phys.: Conf. Ser. 1804 012025

 

View the article online for updates and enhancements.

You may also like
Finding proper time intervals for dynamic
network extraction
Günce Keziban Orman, Nadir Türe, Selim
Balcisoy et al.

-

Multiobjective discrete particle swarm
optimization for community detection in
dynamic networks
Chao Gao, Zhengpeng Chen, Xianghua Li
et al.

-

Inferring interactions of time-delayed
dynamic networks by random state
variable resetting
Changbao Deng,  , Weinuo Jiang et al.

-

This content was downloaded from IP address 185.56.194.83 on 08/08/2023 at 14:44

https://doi.org/10.1088/1742-6596/1804/1/012025
/article/10.1088/1742-5468/abed45
/article/10.1088/1742-5468/abed45
/article/10.1209/0295-5075/122/28001
/article/10.1209/0295-5075/122/28001
/article/10.1209/0295-5075/122/28001
/article/10.1088/1674-1056/ac1e12
/article/10.1088/1674-1056/ac1e12
/article/10.1088/1674-1056/ac1e12


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

ICMAICT 2020
Journal of Physics: Conference Series 1804 (2021) 012025

IOP Publishing
doi:10.1088/1742-6596/1804/1/012025

1
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1University of Sumer, Technical Institute of Samawa, University of Sumer. 

rbahhd@umsystem.edu 

Abstract. Network flow optimization has a wide range of real world applications such 
as in transportation, in electric, in civil engineering, in industrial engineering and in 
communication networks and so on. In the minimum cost network flow model, the goal 
is to find the values of the decisions variables that minimize the total cost of flows over 
the given network. In this work, a new formulation of flow optimization in dynamic 
networks using time scales approach has been presented. The continuous network model 
and the quantum case model are also obtained as special cases. The formulation has 
been given for both dynamic models and time scales models. Moreover, the new 
approach provides the exact optimal solution for this type of optimization problems. 
Furthermore, a new version of some duality theorems for time scales flow optimization 
in dynamic networks has been introduced. 

1.  Introduction 
Discrete network flow models form a large class of optimization problem and have used to model 
problems in operations research, physics, mathematics, and some related fields of engineering. 
Communication, transportation, and manufacturing systems are typical real life applications of this type 
of optimization problem. The minimum cost flow problem and the shortest path problem are two well-
known network flow models. These problems have been studied by many researchers and many 
algorithms for solving this type of optimization  problem have considered. For more details discussion 
of theory, algorithms and applications of network flow problems we refer to [3, 21, 23, 24, 28, 37{39]. 

 On the other hand, some real world applications require flow value on an arc changes over time. 
This type of optimization is called dynamic network flow problem. Ford and Fulkerson [22] were first 
considered the dynamic network flows. The aim of this model is to obtain the maximum flow in a given 
network from a source node t to a sink node s with a specific time horizon T. This problem has various 
applications in many real world problems. Anderson et al. [11] studied the problem of maximizing the 
flow in dynamic network with time varying arc capacities and they also presented computational 
approach as well as duality theory for the dynamic network flows. Hoppe [27] introduced some efficient 
algorithms to find the optimal solution for dynamic network flows models. 

 A general dynamic network flows with arc time-delays has been presented by Pullan [36]. Orda and 
Rom [33] considered some new algorithms to solve the dynamic min cost problem. Minimum-cost 
dynamic flows problem has been presented by Klinz and Woeginger [30]. Hooks and Patterson [26] 
presented new formulation for dynamic networks. Recently, Nasrabadi [32] studied dynamic minimum 
cost flow problem and also established some of the duality theorems as well as some computational 
approaches. For more details about the dynamic network flows problems we refer to [3,31,34,35]. On 
the other hand, time scales theory has been used to formulate and solve many dynamical models. See 
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for e.g. [1,2,6,9,10,13,20,25,29]. Also, linear and fractional linear programming models have been 
formulated using time scales. See e.g. [4,5,7,8] In this work we present time scales formulation for 
dynamic network flow model. 

2.  Time scales calculus 
In this section, some basic concepts of dynamic equations on time scales are presented. The material of 
this section is taken from [18, 19]. 

Definition 1 ”A time scale T is an arbitrary nonempty closed subset of the real numbers”. 
Definition 2 “ The forward and backward jump operators 𝜌, 𝜎 : 𝑇 → 𝑇 are defined by 
𝜎 𝑡  𝑖𝑛𝑓 𝑠 ∈ 𝑇 ∶  𝑠 𝑡  and 𝜌 𝑡  𝑠𝑢𝑝 𝑠 ∈ 𝑇 ∶  𝑠 𝑡  
Definition 3 The graininess function 𝜇  : 𝑇 → 0,∞) is defined by   
𝜇 𝑡 𝜎 𝑡 𝑡” 
Definition 4 “ A function 𝑓 : 𝑎, 𝑏 → 𝑅 is △-differentiable at 𝑡 ∈ 𝑇  provided there exists an 𝛼 ∈

𝑅 such that for each 𝜀 0, there exists a neighborhood 𝐵 of 𝑡 such that 
|𝑓 𝜎 𝑡 𝑓 𝑠 𝛼 𝜎 𝑡 𝑠 | 𝜀|𝜎 𝑡 𝑠|       for all      𝑠 ∈ 𝐵. 
𝛼 denoted by 𝑓△ 𝑡  ” 
Definition 5 “ A function 𝑓 : 𝑇 → 𝑅 is called regulated if its right-sided limits exist (finite) at all 

right-dense points in 𝑇 and its left-sided limits exist (finite) at all left-dense points 𝑇” 
Definition 6 “A function: 𝑇 → 𝑅 is called rd-continuous if it is continuous at each right-dense point 

𝑡 ∈ 𝑇 and left-hand limits exist at each left-dense point  𝑡 ∈ 𝑇” 
Theorem 7 “Every 𝑟𝑑-continuous function has an anti-derivative. In particular, if 𝑡 ∈ 𝑇, then 𝐹 

defined by 

𝐹 𝑡 𝑓 𝑠 △ 𝑠, 

for 𝑡 ∈ 𝑇 is an anti-derivative of  𝑓” 
Theorem  8. “If  𝑓 : 𝑇 → 𝑅 𝑟𝑑-continuous function and 𝑡 ∈ 𝑇 , then 

𝑓 𝜏 △ 𝜏 𝜇 𝑡 𝑓 𝑡  

Theorem 9. “If  𝑓 : 𝑇 → 𝑅 is 𝑟𝑑-continuous and 𝑎, 𝑏 ∈ 𝑇, then 
1-  If  𝑇 𝑅, then 

𝑓 𝑡 △ 𝑡 𝑓 𝑡 𝑑𝑡, 

where the integral on the right is the usual Riemann integral from calculus. 
2- If 𝑎, 𝑏 𝑡 ∈ 𝑇 ∶  𝑎 𝑡 𝑏  consists of only isolated points, then 

𝑓 𝑡 △ 𝑡 𝜇 𝑡 𝑓 𝑡  𝑖𝑓 𝑎 𝑏 0 𝑖𝑓 𝑎 𝑏 𝜇 𝑡 𝑓 𝑡  𝑖𝑓 𝑎 𝑏.  

3- If  𝑇 ℎ𝑍  ℎ𝑘: 𝑘 ∈ 𝑍  where  ℎ 0, then 

𝑓 𝑡 △ 𝑡 ℎ 𝑓 𝑘ℎ  𝑖𝑓 𝑎 𝑏, 0 𝑖𝑓 𝑎 𝑏, ℎ𝑓 𝑘ℎ  𝑖𝑓 𝑎 𝑏.  

4- If  𝑇 𝑍, then 

𝑓 𝑡 △ 𝑡 𝑓 𝑡  𝑖𝑓 𝑎 𝑏, 0 𝑖𝑓 𝑎 𝑏 , 𝑓 𝑡  𝑖𝑓 𝑎 𝑏.  

3.  Dynamic network flow model 
In this section, we present dynamic network flows models. As in [31],”we denote flow over time in the 
network 𝐺 with time horizon 𝑇 is a bounded function measurable functions on 0,𝑇 ” “ An initial storage 
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of 𝑢 0 , 𝑔 , 𝑡  the amount of flow per time unit into arc 𝑖, 𝑗  at time 𝑡, 𝑐 𝑡  represents the supply or 
demand rate at node 𝑖 at time 𝑡, 𝑓 𝑡  denotes the maximum storage allowed, and 𝑏 𝑡  is the cost per 
time unit for storing one unit of flow at node 𝑖 at time 𝑡” “ 𝑎 𝑡 , 𝑏 𝑡 , 𝑐 𝑡 , 𝑔 𝑡  , and 𝑓 𝑡  are bounded 
measurable functions on 0,𝑇 ” The primal continuous minimum cost flow model 𝑃𝐶𝑀𝐶𝛤𝑀  is 
formulated in [31] as “ 

 𝑀𝑖𝑛  𝜑 𝑥 𝑎 𝑡 𝑥 𝑡 𝑑𝑡 𝑏 𝑡 𝑢 𝑡 𝑑𝑡  

𝑠. 𝑡. 𝑥 , 𝑠 𝑑𝑠
: , ∈

𝑥 , 𝑠 𝜆𝑖, 𝑗 𝑑𝑠
: , ∈

𝑢 𝑡 𝑐 𝑡  , 𝑖 ∈ 𝑁, 𝑡

∈ 0,𝑇  𝑥 , 𝑠 𝑑𝑠
: , ∈

𝑥 , 𝑠 𝜆𝑖, 𝑗 𝑑𝑠
: , ∈

𝑢 𝑡

𝑓 𝑡 𝑐 𝑡  , 𝑖 ∈ 𝑁, 𝑡 ∈ 0,𝑇  𝑎𝑛𝑑 𝑥,𝑦 ∈ 𝐸 , 𝑥 𝑡 𝑔 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 0 𝑡
∈ 0,𝑇 ”,  

                                                                                                                 𝑃𝐶𝑀𝐶𝛤𝑀  
The dual continuous minimum cost flow model 𝐷𝐶𝑀𝐶𝛤𝑀  is formulated in [31] as” 

 𝑀𝑎𝑥  𝐺 𝑦, 𝑣,𝑤 𝑐 𝑡 𝑦 𝑡 𝑑𝑡 𝑓 𝑡 𝑐 𝑡 𝑣 𝑡 𝑑𝑡 𝑔 𝑡 𝑤 𝑡 𝑑𝑡 

 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 𝑠 𝑦 𝑠 𝜆 , 𝑑𝑠 𝑣 𝑠 𝑣 𝑠 𝜆 , 𝑑𝑠  ,𝑤 , 𝑎 , , 𝑖, 𝑗 ∈ 𝐴, 𝑡

∈ 0,𝑇  𝑎𝑛𝑑 𝑦 ∈ 𝐸 ,𝑦 𝑡 , 𝑣 𝑡,𝑤 𝑡 0, 𝑡 ∈ 0,𝑇 ”  
                                                                                                               𝐷𝐶𝑀𝐶𝛤𝑀  

4.  Network flow on time scales 
We consider𝐸 , represents the space of all rd-continuous functions from 𝐽 into 𝑅  .The primal time 
scales minimum cost flow model 𝑃𝑇𝑆𝑀𝐶𝛤𝑀  is formulated as 

 𝑀𝑖𝑛  𝜑 𝑥 𝑎 𝑡 𝑥 𝑡 𝛿𝑡 𝑏 𝑡 𝑢 𝑡 𝛿𝑡  

𝑠. 𝑡. 𝑥 , 𝑠 𝛿𝑠
: , ∈

𝑥 , 𝑠 𝜆𝑖, 𝑗 𝛿𝑠
: , ∈

𝑦 𝑡 𝑐 𝑡  , 𝑖 ∈ 𝑁, 𝑡

∈ 𝐽 𝑥 , 𝑠 𝛿𝑠
: , ∈

𝑥 , 𝑠 𝜆𝑖, 𝑗 𝛿𝑠
: , ∈

𝑢 𝑡

𝑓 𝑡 𝑐 𝑡  , 𝑖 ∈ 𝑁, 𝑡 ∈ 𝐽 𝑎𝑛𝑑 𝑥,𝑦 ∈ 𝐸 , 𝑥 𝑡 𝑔 𝑡 , 𝑥 𝑡 ,𝑦 𝑡 0 𝑡 ∈ 𝐽,  
                                                                                                                   𝑃𝑇𝑆𝑀𝐶𝐹𝑀  
The dual time scales minimum cost flow model 𝐷𝑇𝑆𝑀𝐶𝛤𝑀  is formulated as 

 𝑀𝑎𝑥  𝐺 𝑦, 𝑣,𝑊 𝑐 𝑡 𝑦 𝑡 𝛿𝑡 𝑓 𝑡 𝑐 𝑡 𝑣 𝑡 𝛿𝑡 𝑔 𝑡 𝑤 𝑡 𝛿𝑡  

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦 𝑠 𝑦 𝑠 𝜆 , 𝛿𝑠 𝑣 𝑠 𝑣 𝑠 𝜆 , 𝛿𝑠  ,𝑤 , 𝑎 , , 𝑖, 𝑗 ∈ 𝐴, 𝑡

∈ 𝐽 𝑎𝑛𝑑 𝑦 ∈ 𝐸 ,𝑦 𝑡 , 𝑣 𝑡,𝑤 𝑡 0, 𝑡 ∈ 𝐽.  
                                                                                                               𝐷𝑇𝑆𝑀𝐶𝐹𝑀  
Remark1. If 𝑇 𝑅, then the continuous time dynamic network flows model is obtained as described 

in Section 3. 
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Remark2. If  𝑇 𝑞 ,  then  the  quantum calculus dynamic network flows model is obtained see 
[11]. 

5.  Duality Theory on Time Scales 
In this section, we present a new version of the duality theorems on time scales. Moreover, the duality 
theorems of continuous and quantum calculus versions are obtained as special cases. 

Theorem.1. If 𝑥,𝑢  and 𝑦, 𝑣,𝑤  are any two feasible solutions of the primal time scales network 
ftow model 𝑃𝑇𝑆𝑀𝐶𝛤𝑀  and the dual time scales network flow model 𝐷𝑇𝑆𝑀𝐶𝐹𝑀  , respectively, 
then the following inequality hold 𝜑 𝑥,𝑢 𝐺 𝑦, 𝑣,𝑤  . 

Proof.  Let 𝑥,𝑢  and 𝑦, 𝑣,𝑤  be arbitrary feasible solutions of the primal time scales network flow 
model 𝑃𝑇𝑆𝑀𝐶𝛤𝑀  and the dual time scales network flow model  𝐷𝑇𝑆𝑀𝐶𝑇𝑀  , respectively, using 
Definition 2.10, the objective function of primal time scales network flow model 𝑃𝑇𝑆𝑀𝐶𝐹𝑀  becomes 

   𝑀𝑖𝑛  ∅ 𝑋,𝑢 𝜇𝑡 𝑎 𝑡 𝑥 𝑡 𝜇𝑡 𝑏 𝑡 𝑢 𝑡  .    

Using [12, Theorem 4.3 on page 146] , there exists a feasible solution 𝛼,𝛽, 𝛾  of 

   𝑀𝑎𝑥  𝑀 𝛼,𝛽, 𝛾 𝑐 𝑡 𝑦 𝑡

 

𝑓 𝑡  —  𝑐 𝑡 𝛽 𝑡 𝑔 𝑡 𝛾 𝑡      

                                                                                                                 5.1    
and we have 
                                                               𝜑 𝑥,𝑢 𝑀 𝛼,𝛽, 𝛾  .                              5.2  
Now we put 

                                                             𝑦 𝑡   for 𝑘 0,1, . . . , N.             (5.3) 

                                                             𝑣 𝑡  for 𝑘 0,1, . . . , N.              (5.4) 

                                                            𝑤 𝑡 for  𝑘 0,1, . . . , N.               (5.5) 

  Using (5.3), (5.4), (5.5) in (5.2), we get 

∅ 𝑥,𝑢 𝑀 𝛼,𝛽, 𝛾 𝑐 𝑡
 

𝑦 𝑡 𝑓 𝑡  —  𝑐 𝑡

 

𝛽 𝑡 𝑔 𝑡 𝛾 𝑡   

𝑐 𝑡 𝜇 𝑡 𝑦 𝑡

 

𝑓 𝑡 𝑐 𝑡 𝜇 𝑡  

𝑣 𝑡 ∑ 𝑔 𝑡 𝜇 𝑡 𝑤 𝑡 𝐺 𝑦, 𝑣,𝑤  . 
This completes the proof. 
Theorem 2. If 𝑥∗,𝑢∗  is a feasible solution of the primal problem 𝑃𝑇𝑆𝑀𝐶𝛤𝑀  and 𝑦∗, 𝑣∗,𝑤∗  is 

a feasible solution of the dual problem 𝐷𝑇𝑆𝑀𝐶𝐹𝑀  with 
𝜑 𝑥∗,𝑢∗ 𝐺 𝑦∗, 𝑣∗,𝑤∗  , then 𝑥∗,𝑢∗  is an optimal for the primal network 
model and 𝑦∗, 𝑣∗,𝑤∗  is an optimal for the dual network model. 
Proof. By Theorem 5.1, any feasible solution 𝑥,𝑢  of the primal problem 

𝑃𝑇𝑆𝑀𝐶𝛤𝑀 ,we have 𝑎 𝑡 𝑥 𝑡 𝛿𝑡 𝑏 𝑡 𝑢 𝑡 𝛿𝑡 𝑐 𝑡 𝑦∗ 𝑡 𝛿𝑡

𝑓 𝑡 𝑐 𝑡 𝑣∗ 𝑡 𝛿𝑡 𝑔 𝑡 𝑤∗ 𝑡 𝛿𝑡 . This implies 𝜑 𝑥,𝑢  
𝐺 𝑦∗, 𝑣∗,𝑤∗  , but 𝐺 𝑦∗, 𝑣∗,𝑤∗ 𝜑 𝑥∗,𝑢∗  is given. Therefore, 𝜑 𝑥∗,𝑢∗  
𝜑 𝑥,𝑢  for any feasible solution 𝑥,𝑢  of the primal problem 𝑃𝑇𝑆𝑀𝐶𝛤𝑀  . 
Hence, it follows from the definition of optimality that 𝑥∗,𝑢∗  is an optimal solution of the primal 

problem 𝑃𝑇𝑆𝑀𝐶𝛤𝑀  . Similarly, Theorem 
5.1, for any feasible solution 𝑦, 𝑣,𝑤  of the dual problem 𝐷𝑇𝑆𝑀𝐶𝛤𝑀  , we 
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have 𝑎 𝑡 𝑥∗ 𝑡 𝛿𝑡 𝑏 𝑡 𝑢∗ 𝑡 𝛿𝑡 𝑐 𝑡 𝑦 𝑡 𝛿𝑡 𝑓 𝑡  

𝑐 𝑡 𝑣 𝑡 𝛿𝑡 𝑔 𝑡 𝑤 𝑡 𝛿𝑡. This implies 𝑥∗,𝑢∗ 𝐺 𝑦, 𝑣,𝑤  , but 
𝐺 𝑦∗, 𝑣∗,𝑤∗ 𝜑 𝑥∗,𝑢∗  is given. Therefore, 𝐺 𝑦∗,𝑣∗,𝑤∗ 𝐺 𝑦, 𝑣,𝑤  for 
any feasible solution 𝑦, 𝑣,𝑤  of the dual problem 𝐷𝑇𝑆𝑀𝐶𝛤𝑀  . Thus, it follows from the definition 

of optimality that 𝑦∗, 𝑣∗,𝑤∗  is an optimal solution of the dual problem 𝐷𝑇𝑆𝑀𝐶𝐹𝑀  . This completes 
the proof.  

Theorem.3. If the primal time scales network flow model 𝑃𝑇𝑆𝑀𝐶𝛤𝑀  has an optimal solution 
𝑥∗,𝑢∗  , then the dual time scales network flow model 𝐷𝑇𝑆𝑀𝐶𝛤𝑀  has an optimal solution 
𝑦∗, 𝑣∗,𝑤∗  such that 𝜑 𝑥∗,𝑢∗ 𝐺 𝑦∗, 𝑣∗,𝑤∗  . 

Proof. Let 𝑥,𝑢  be an arbitrary feasible solution of the primal quantum network flow model 
𝑃𝑇𝑆𝑀𝐶𝐹𝑀  , using Definition 2.10, the objective function of primal quantum network flow model 
𝑃𝑇𝑆𝑀𝐶𝛤𝑀  becomes 

   𝑀𝑖𝑛  𝜑 𝑥,𝑢 𝜇 𝑡 𝑎 𝑡 𝑥 𝑡 𝜇 𝑡 𝑏 𝑡 𝑢 𝑡  .    

Using [12, Theorem4.4 on page 148], there exists an optimal solution 𝛼∗,𝛽∗, 𝛾∗  of 

  𝑀𝑎𝑥  𝑀 𝛼,𝛽, 𝛾 ∑ 𝑐 𝑡 𝛼 𝑡 ∑ 𝑓 𝑡  —  𝑐 𝑡 𝛽 𝑡 ∑ 𝑔 𝑡 𝛾 𝑡        
(5.6) 

and we have 
                                                       𝜑 𝑥∗,𝑢∗ 𝑀 𝛼∗,𝛽∗, 𝛾∗     5.7                                                                 
Now we put 

                                                    𝑦∗ 𝑡
∗

 for 𝑘 0,1, . . . , N.        (5.8)                                             

                                              𝑣∗ 𝑡
∗

  for 𝑘 0,1 … ..N               (5.9)                                         

                                                       𝑤∗ 𝑡
∗

 for 𝑘 0,1, . . . , N.             (5.10)                                      

     Using (5.8), (5.9), (5. 10)   in (5.7), we get 

𝜑 𝑥∗,𝑢∗ 𝑀 𝛼∗,𝛽∗, 𝛾∗ 𝑐 𝑡 𝛼∗ 𝑡 𝑓 𝑡  —  𝑐 𝑡 𝛽∗ 𝑡 𝑔 𝑡 𝛾∗ 𝑡  

𝑐 𝑡 𝜇 𝑡 𝑦∗ 𝑡 𝑓 𝑡 𝑐 𝑡 𝜇 𝑡  

𝑣∗ 𝑡 ∑ 𝑔 𝑡 𝜇 𝑡 𝑤∗ 𝑞 𝐺 𝑦∗, 𝑣∗,𝑤∗  . 
Using Theorem 5.2, we obtain that 𝑦∗, 𝑣∗,𝑤∗  is an optimal solution for the dual network flow 

model. This completes the proof.  

6.  Conclusion 
In this paper, we introduce a new version of the dynamic network model using time scales analogue. 
The new formulation is presented for both the primal and the dual network flow models. In addition, we 
introduce a new version of some duality theorems using arbitrary time scales set. Moreover, this 
approach is efficient and simple to implement. Furthermore, the new approach does not require any 
theoretical convergence results, because it gives an exact optimal solution for network flow models 
which reduced the large computation effort. The discrete network flow model and quantum calculus 
network flow model can be obtained as special cases of this formulation. 
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