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A B S T R A C T   

This study presents a methodology developed for estimating effective connectivity in brain networks (BNs) using 
multichannel scalp EEG recordings. The methodology uses transfer entropy as an information transfer measure to 
detect pair-wise directed information transfer between EEG signals within δ, θ, α, β and γ-bands. The developed 
methodology is then used to study the properties of directed BNs in children with attention-deficit hyperactivity 
disorder (ADHD) and compare them with that of the healthy controls using both statistical and receiver operating 
characteristic (ROC) analyses. The results indicate that directed information transfer between scalp EEG elec
trodes in the ADHD subjects differs significantly compared to the healthy ones. The results of the statistical and 
ROC analyses of frequency-specific graph measures demonstrate their highly discriminative ability between the 
two groups. Specifically, the graph measures extracted from the estimated directed BNs in the β-band show the 
highest discrimination between the ADHD and control groups. These findings are in line with the fact that β-band 
reflects active concentration, motor activity, and anxious mental states. The reported results show that the 
developed methodology has the capacity to be used for investigating patterns of directed BNs in neuropsychiatric 
disorders.   

1. Introduction 

Analysis of functional integration in the brain is a multidisciplinary 
field of research which looks into the dynamical interactions between 
brain regions. These relationships can be divided into two general 
classes of functional and effective connections [1]. Functional connec
tivity studies the statistical dependencies between the dynamics of brain 
areas. Effective connectivity, on the other hand, indicates the causal 
interactions between activated brain regions and describes the direc
tional effects one neuronal system in the brain exerts upon another. 
Integrative and multimodal analyses of brain connectivity can poten
tially lead to enhanced neurologic principles by validating and extend
ing pathophysiological concepts. Effective connectivity in the context of 
brain dynamics refers to causal functional interactions between regions 
of the brain; that is, to the direct effect on another region of one region of 
the brain. To determine effective connectivity, the variation of neuronal 
activity within one area of the brain and measurements of responses in 
remote areas can be used. These variations can be achieved under 

certain assumptions regarding their effects by delivering carefully 
controlled stimuli or by procedures such as neuroimaging. Obviously, 
the type of connectivity to be analyzed and the use of integrative 
methods depend on the purpose of the study, brain function and 
research assumptions [1–3]. 

Attention-deficit hyperactivity disorder (ADHD) is a highly prevalent 
disorder of childhood characterized by inattention, hyperactivity and 
impulsivity [4]. Children with ADHD suffer from weak behavioral 
management and control, so that they often show relevant reactions to 
various stimuli [5–8]. ADHD is diagnosed by a set of criteria outlined in 
the Diagnostic and Statistical Manual of Mental Disorders IV Text 
Revision (DSM-IV-TR), and International Classification of Diseases 
(ICD-10) [9,10]. Those diagnostic criteria are measured through 
cognitive functional tests and behavioral observations. 

Cortical activity in one part of the brain and its causal relationship 
with responses in other brain areas can be quantified through effective 
connectivity analysis of functional magnetic resonance imaging (fMRI), 
magnetoencephalography (MEG), and electroencephalography (EEG) 
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[11–13]. 
Effective connectivity studies have revealed neural mechanisms and 

pathways in humans’ brain networks (BNs) during task engagement 
including attention [14], visual pursuit [15], reading [16], 
cerebro-cerebellar visual processing of body motion [17], memory 
retrieval [18] and mental imagery [19]. Such analyses have, therefore, 
been used to investigate brain function of patients with neuropsychiatric 
conditions such as ADHD. Abnormal features of effective brain con
nectivity in ADHD patients have already been postulated from the 
pathophysiological perspective [20]. For example, Sripada et al. [21] 
hypothesized the presence of abnormal network interconnections in 
patients with ADHD. Most of the previous studies have used EEG, MEG, 
and fMRI data to evaluate functional connectivity in ADHD subjects 
[22–26]. Alba et al. [22] showed that although there is no statistically 
significant difference between average functional connectivity of the 
ADHD cohort and healthy subjects, its variability is statistically greater 
in the patients group. Khadmaoui et al. [23] argued that the interactions 
between EEG channels at rest are stronger in ADHD patients compared 
to the healthy control subjects at frontal regions and in all EEG fre
quency bands. The functional linkage between regions of interests in 
fMRI recordings of ADHD and its link with brain structure was studied in 
[24]. The analysis of functional brain connectivity in ADHD and 
non-ADHD subjects in [25] addressed brain cognition and brain disor
ders in ADHD patients. In [26], the structural and functional BNs in the 
ADHD cases and their pathophysiological substrates were investigated. 
It is important to note that the majority of previous EEG studies of ADHD 
have examined functional connectivity within low frequency bands. 
However, there is an increasing evidence showing the contribution of 
high frequency EEG activities in memory and attention [27,28]. This 
observation has led to a number of studies on effective connectivity 
analysis of ADHD at higher frequency bands of EEG [29–31]. In [32], a 
significant bidirectional information flow was shown between EEG 
channels through effective connectivity analysis in the time and fre
quency domains. The impact of spectral content on functional and causal 
relationships between scalp EEG channels in ADHD is still an open 
question. In the most recent related paper, published while this manu
script was being revised, different information pathways of BNs were 
investigated in children with ADHD in comparison with healthy subjects 
[33]. This study has used the same database as the one in the current 
work and has shown that directed information flow between brain re
gions, it is likely disrupted in children with ADHD, and this change is 
frequency-specific. 

The increasing usage of EEG-derived brain connectivity analysis in 
ADHD studies over the recent years implies the salient capacity of this 
approach for better understanding of ADHD and its impact on EEG re
cordings. In particular, effective connectivity analysis of scalp EEG 
provides an affordable, non-invasive and temporally high-resolution 
measurement to study directional and non-directional interactions be
tween cortical regions of ADHD patients. This paper investigates effec
tive connectivity in a group of 56 ADHD patients in contrast to 56 
control subjects through measuring of the information flow between 
scalp EEG channels using transfer entropy (TE) [34]. The aim is to 
explore the impact of ADHD on the graph features of EEG-based directed 
BNs. Transfer entropy between EEG channels is used to generate 
directed brain graphs in the two groups. The differences between the 
BNs are studied in the five standard EEG frequency bands. In this way, 
we look into the impact of EEG frequency bands on the effective con
nectivity of ADHD versus healthy subjects from the perspective of graph 
theory. 

The rest of the paper is organized as follows: Section 2 describes the 
multichannel EEG database used in this study and introduces the 
adapted analysis framework for estimating directed BNs using multi
channel scalp EEG signals. In Section 3, the experimental results of 
applying the proposed methodology to the EEG database are presented 
and discussed in Section 4. The paper is concluded in Section 5. 

2. Materials and methods 

2.1. The EEG database 

This study used a newly released database consisting of scalp-level 
multichannel EEG signals collected from 121 children [35]. The sig
nals were recorded at the sampling rate of 128 Hz using a 19-channel 
montage, i.e. Fp1, Fp2, F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, 
T5, T6, Fz, Cz, and Pz, according to the 10–20 international system of 
EEG electrode placement. Eye movements were recorded by two elec
trodes that were placed below and above the right eye. An EEG 
recording protocol was designed according to the behavior of ADHD 
children based on the visual attention tasks [36]. The images of cartoon 
characters were shown to the children and the subjects were asked to 
count the number of characters during the EEG recording. Each 
randomly selected image had between five to 16 characters and the 
image size was big enough for children to see and count. In order to 
achieve an ongoing stimulus during signal capture, the images were 
displayed immediately and continuously after the child’s response. 
Therefore, the duration of each EEG recording over the course of this 
cognitive visual task was dependent on the performance of the child. 
Note that the database does not provide the number of incorrect answers 
provided by the subjects or any information about the behavior rating 
scales for the ADHD subjects. 

Amongst the 121 subjects, 61 children were diagnosed as having 
ADHD by an experienced psychiatrist based on the guidelines in the 
American Psychiatric Association’s Diagnostic and Statistical Manual, 
4th edition (DSM-IV) [37]. The remaining 60 children participated as 
healthy controls voluntarily and were checked to have no particular 
psychological disorder, epilepsy or head injury. More details about this 
EEG database can be found in [35]. In this study, we used 56 EEG 
datasets from each group and fed them into the pre-processing stage. 

2.2. Methods 

The analysis framework in this study consists of the following steps: 
(i) pre-processing, (ii) construction of weighted directed BNs, (iii) graph 
analysis, and (iv) statistical and ROC analyses. The block diagram of the 
adapted framework is depicted in Fig. 1. 

2.2.1. Pre-processing 
The removal of physiological and non-physiological artifacts such as 

high-amplitude changes of EEG due to eye movement is a crucial step for 
extraction of meaningful information from multichannel EEG re
cordings. In order to enhance the EEG signals, we first applied a zero 
phase Butterworth filter of order 50 in the 0.5–45 Hz frequency band. 
We then used a stationary wavelet transform (SWT) to enhance EEG 
datasets more and extract δ (0.5–4 Hz), θ (4–8 Hz), α (8–13 Hz), β 
(13–30 Hz), and γ (30–45 Hz) frequency bands. The SWT utilizes 
recursively dilated filters in order to halve the bandwidth from one level 
to another, so it is suitable for highlighting the spectral features of EEG 
in different frequency bands [38]. It is a translation-invariance modifi
cation of the Discrete Wavelet Transform that does not decimate co
efficients at every transformation level, i.e. the approximation and 
details coefficients at all levels have the same length as the original 
signal. In this study, the SWT was implemented using the Haar wavelet 
as the mother wavelet and the decomposition level was chosen to be 5. 
Note that this choice of the decomposition level, given the fact that the 
sampling frequency of the EEG signals is 128 Hz, allows for the 
extraction of δ, θ, α, β and γ frequency bands. Finally, all EEG channels in 
each dataset were visually inspected and the intervals with remaining 
artifacts were removed manually. 

The first 1-min segment from the pre-processed multichannel EEG 
datasets of each group was chosen for analysis. Note that the EEG signals 
used in this study were recorded while the subjects were performing a 
continuous cognitive visual task, i.e. under continuous stimulus. This 
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was achieved by displaying each image immediately and uninterrupt
edly after the subject’s response. The 1-min segment was then divided 
into 3-s overlapping windows (containing 384 samples) with 1-s overlap 
between successive windows; resulting in 29 sliding windows for each 
subject. The duration of EEG segments was chosen based on the previous 
studies in this field [29,35]. See Table 1 for more information about the 
selected EEG datasets in this study. 

2.2.2. Estimation of directed BNs from multichannel EEG 
From each multichannel EEG segment, the directed BNs were esti

mated using pair-wise TE and analyzed in five commonly used EEG 
frequency bands, i.e., δ, θ, α, β, and γ frequency bands. 

2.2.2.1. Transfer entropy. Pair-wise transfer entropy (TE) was used to 
quantify the directional relationship between scalp EEG channels [39]. 
TE estimates linear and nonlinear connections between two signals by 
measuring the amount of data transferred into each direction between 
them [39]. It has, therefore, become an inviting choice for the estima
tion of BNs using multichannel EEG [40]. Let X and Y be two EEG 
channels which are assumed to be of kth and lth order Markov processes, 
i.e., each sample of X and Y at time t depends only on its past k and l 
samples, respectively. In other words, the two random processes are 
embedded in a reconstructed phase space with the dimension of k and l, 
respectively. Therefore, X and Y can be represented as a set of k- and 
l-dimensional reconstructed state vectors denoted as X(k)

t = (Xt ,Xt− 1,… 

Fig. 1. Block diagram of the methodology used in this study for estimation and analysis of directed BNs in ADHD and healthy control subjects. Abbreviations: TE: 
transfer entropy, CM: connectivity matrix, ROC: receiver operating characteristic, and AUC: area under the ROC curve. 
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,Xt− k+1) and Y(l)
t = (Yt , Yt− 1, …, Yt− l+1), respectively. In this case, the 

transfer of information flow from channel X to channel Y is defined as 
the ratio of the conditional distribution of Y with respect to the past 
samples of X and Y versus the conditional distribution of Y depending 
only on its own past [41]: 

TEX→Y =T
(
Yt+1

⃒
⃒X(k)

t ,Y(l)
t

)
=

∑

Yt+1 ,Y
(l)
t ,X(k)

t

p
(
Yt+1,X(k)

t ,Y(l)
t

)
log

(
p
(
Yt+1

⃒
⃒Y(l)
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t

)
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(
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(1)  

where p(Yt+1,X(k)
t ,Y(l)

t ) represents the joint probability density function 
(PDF) of Yt+1, X(k)

t , and Y(l)
t values, and p(Yt+1

⃒
⃒Y(l)

t ,X(k)
t ) and p(Yt+1

⃒
⃒Y(l)

t ), 
respectively, represent conditional PDFs of Yt+1 given the past infor
mation of Y(l)

t and X(k)
t as well as Y(l)

t only. A value of TEX→Y = 0 indicates 
that X transfers no information to Y. Also, it is clear from the definition 
of TEX→Y that TEX→Y and TEY→X are not necessarily equal. For calcu
lating the transfer entropy between any two channels, this study used 
the value of 1 for both k and l. This choice is supported by other studies, 
e.g. [41,42], which have found that these values are especially appro
priate in biomedical experiments where time series length is usually 
short and the absolute values of auto-correlation functions tend to 
decrease monotonically as time lag increases. 

In order to normalize the directional relationship between each pair 
of EEG channels and set the maximum TEX→Y values to 1, the normalized 
transfer entropy NTEX→Y was defined as follows: 

NTEX→Y =
TEX→Y

(TEX→Y + TEY→X)
∈ [0, 1]. (2) 

In this study, we used the definition of NTEX→Y to develop a 
frequency-specific time-varying connectivity matrix (CM) for sliding- 
windowed multichannel EEG recordings of each subject. The matrix is 
defined as follows: 

CM =
[
NTEX,Y

]
∈ R19×19×Nw (3)  

where Nw is the number of EEG segments in the dataset and CMw
ij is 

associated with the normalized transfer entropy from the ith EEG channel 
to the jth EEG channel in the wth sliding window. In fact, CM serves as a 
time-varying directional brain graph with 19 nodes for each EEG dataset 
in five EEG frequency bands. The rows of CM at each window indicate 
the strength of the outgoing connections from the ith node to the jth node 
and the columns of CM indicate the strength of the incoming connec
tions to the ith node from the jth node. The directed brain graphs CM for 
all subjects in the ADHD and healthy groups were computed (five graphs 
per subject associated with five EEG frequency bands) and six undi
rected graph measures were extracted from them to investigate the 
network differences between directed BNs of the two groups. 

2.2.3. Characterizing BNs using graph measures 
In this study, six graph measures were used to quantify network 

features of causal interactions between EEG channels at the local and 
global scales covering both integration and segregation aspects of 
functional information flow in cortical dynamics. A brief description of 
the graph measures used in this study is followed, while more details can 
be found in [43–46].  

1. Global efficiency (GE) is defined as the average inverse shortest path 
length between all node pairs in the graph. High global efficiency 
means that connections can easily exchange information across the 
entire graph.  

2. Mean weighted clustering coefficient (MWCC) is calculated as the 
ratio of the number of triangles around a node to the number of 
possible triplets around that node averaged over all nodes in the 
graph. High MWCC shows a high probability that the neighboring 
nodes are interrelated and connected. 

3. Average degree (AD) is calculated as the average number of con
nections across the rows of the graph (indicating the out-degree) and 
the number of connections across the columns of the graph (indi
cating the in-degree). High average degree means that the graph has 
more connections and therefore, information can move faster from 
one node to another.  

4. Mean strength (MS) is the average strength of all nodes in the graph, 
where the strength of a node is defined as the sum of the edge weights 
associated with that node. MS values depend on the number of in- 
and out-edge weights for all node-related connections.  

5. Transitivity (Tr) reveals the existence of tightly connected clusters in 
the graph by measuring the overall probability for the graph to have 
adjacent nodes interconnected. Maximum value of Tr is 1 which 
means that the graph contains all possible edges.  

6. Path length (PL) is calculated as the average distance from a node to 
all other nodes in the graph. High path length means the graph has 
long connection between nodes. 

2.2.4. Statistical and ROC analyses 
Once the directed BNs were constructed and the graph measures 

were extracted from them, the measures representing directed BNs for 
the two groups were compared through a rigorous statistical testing. As 
mentioned in Section 2.2.3, six graph measures were extracted from the 
constructed directed BN of each 3-s 19-channel EEG segment in five 
different frequency bands. This resulted in 29 × 56 = 1624 values, i.e. 
the number of 3-s segments for each subject times the number of subjects 
in each group, for each graph measure in each frequency band for each 
group. In order to check whether the extracted graph measures for 
ADHD and healthy control subjects and therefore, the constructed BNs 
are statistically different, we carried out the t-test on the 1624 values of 
each feature for the two groups in different frequency bands, i.e. δ, θ, α, β 
and γ. We also used each graph measure in each frequency band to 
classify the two groups, computed the sensitivity (SEN) and the speci
ficity (SPE) for each measure and calculated the area under the receiver 
operating characteristic (ROC) curve, i.e. AUC, as a criterion of the ca
pacity of a particular measure for discrimination between the two 
groups. The entire analysis framework was implemented in MATLAB 
and the graph measures were extracted using the Brain Connectivity 
Toolbox [47]. 

3. Results 

3.1. Spectral analysis 

Fig. 2 displays the brain topographic maps of the normalized mean 
EEG power in different frequency bands for ADHD and healthy control 
subjects. Specifically, the plots show that powers in θ and β frequency 
bands in ADHD subjects are higher than that of the ones of the healthy 
subjects. 

Table 1 
Details about the selected EEG datasets used in this study. Subject IDs are in 
accordance with the indexing of subjects in [35].  

Group Subject IDs of the selected datasets Dataset length in 
seconds (min – max) 

ADHD 1, 3, 6, 8, 10, 12, 14, 18, 19, 21, 22, 24, 27, 
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 
40, 173,177, 179, 181, 183, 190, 196, 198, 
200, 204, 206, 209, 213, 215, 219, 227, 
234, 236, 238, 244, 246, 250, 254, 263, 
265, 270, 274, 279, 284, 288. 

(63–283) 

Healthy 
control 

41,42, 43, 44, 45, 46, 47, 49, 50, 52, 53, 54, 
56, 57, 58, 59, 60, 107, 108, 109, 110, 111, 
112, 113, 114, 115, 116, 117, 118, 120, 
121, 123, 125, 127, 129, 131, 133, 134, 
138, 140, 143, 147, 151, 297, 298, 299, 
300, 302, 303, 304, 305, 306, 307, 308, 
309, 310. 

(70–178)  
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3.2. Reaction time assessment 

Fig. 3 shows the statistics of the response time recorded from the 
ADHD and healthy children. Note that the EEG database used in this 
study does not include the number of incorrect answers provided by the 
subjects. However, in [48], the number of incorrect answers for a subset 
of the database we have used in this study, i.e. 30 ADHD children and 30 
healthy children, are reported to be 1.84 and 2.04 for healthy and ADHD 
subjects, respectively. 

3.3. Effective BNs of ADHD and healthy control subjects 

The first 1-min length of each 19-channel pre-processed EEG dataset 
was band-pass filtered in δ, θ, α, β and γ frequency bands and segmented 
in 3-s epochs with 1-s overlap. From each 3-s segment of multichannel 
EEG, five 19 × 19 graphs (i.e., CM’s) representing directed BNs for each 
frequency band were computed using Eqs. (1)–(3). It resulted in 29 
graphs for each EEG band for each dataset. In total, for each group, we 
computed 56 × 29 = 1624 graphs in each EEG rhythm. The averages of 
those 1624 graphs are shown in Fig. 4 and Fig. 5. The color-coded values 
in the graphs indicate the presence and strength of effective (directional) 
links between EEG electrodes and the flow of information among them. 

3.4. Statistical analysis of connectivity measures for ADHD and healthy 
control subjects 

The six directed graph measures described in Section 2.2.3 were 
extracted from each directed BN associated with the the EEG segments 
under analysis. As mentioned earlier, for each group, we had 1624 
graphs in each frequency band. Therefore, for each graph measure in 
each of the five frequency bands, we had two 1 × 1624 vectors showing 
the values of that measure for the two groups. In order to statistically 
compare the values of the measures and check whether the values for the 
two groups are statistically different, we performed the independent 
two-sample t-test on the two vectors. The p-values are reported in 
Table 2 in which we have used * and ** to respectively indicate that p- 
value <0.05 and p-value <0.001. 

Fig. 6 shows the box plots of all the six graph measures for the two 
groups in different EEG rhythms. Note that each box shows the distri
bution of a particular graph measure for a given group in a given fre
quency band through displaying the data quartiles and averages. 

Finally, we evaluated the performance of each graph measure in 
classifying the BNs representing ADHD and healthy control subjects 
using the ROC analysis and the area under the ROC curve, i.e. the AUC, 
was used as a criterion of how well the measure differentiates between 
the two groups. The resulted AUC values are reported in Table 2. 

Fig. 2. Brain topographic maps of the normalized average EEG power in different frequency bands for ADHD and healthy control subjects.  

Fig. 3. Statistics of the response time for a subset of 30 ADHD and 30 healthy children in the EEG database, used in this study (see [48]).  
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4. Discussion 

The findings of this study are threefold: (i) transfer entropy can 
quantify the changes of effective brain connectivity as derived from 
scalp EEG signals at different frequency bands in children with ADHD; 
(ii) the most significant difference between the graph measures of 
effective brain connectivity of ADHD versus controls is reflected in the 
beta band of EEG; and (iii) this difference can be observed in different 
aspects of effective brain connectivity at the local and global scales. This 
finding is confirmed by the results of the ROC analysis given in Table 2 
and visualized in Fig. 6. The AUC values and the box plots specifically 
show that graph measures extracted from the directed BNs in the β band 
are more discriminative between the two groups. According to Fig. 5, 
the most significant entropy values are across frontal areas and the 
spectral power is maximal at the beta band across the frontal and oc
cipital areas. Interestingly, the average transfer entropy values of ADHD 
are significantly lower than the control group, which may imply that the 
information transfer across scalp EEG electrodes is impaired in ADHD. 

The important role of EEG frequency bands and their relationship 
with different cognitive and behavioral abilities in humans has been 
widely studied [49,50]. In particular, the three frequency bands of δ, θ, 
and β have shown to be heavily related to concentration and relaxation. 
The δ band has been associated with deep sleep, interictal states, and 
sudden lapses of attention. The θ band is known to link with deep 
relaxation, dizziness, focus, balance and stability. The α band reflects 

wake and relaxed, calm states of mind, and high-level thinking such as 
mental calculations. The β band has been reported to be dominated in 
consciousness and awakeness, active concentration, motor activity as 
well as busy and anxious mental states. The results of this study put 
weight on the significance of the β band on the EEG recordings of ADHD 
in contrast to the other EEG frequency bands. As illustrated in Figs. 4 and 
5, the highest discrimination between the graph features of effective 
connectivity in the ADHD and control groups are observed at the β 
frequency band. In other words, active concentration, motor activity, 
and anxiety are the most discriminative factors between the two groups. 
This is in line with our understanding from the impact of ADHD on 
children where they will face difficulties in the mental concentration 
abilities and may experience different levels of anxiety [51,52]. 

By using directed connectivity measures such as TE, one can take 
both directionality of information flow between different cortical areas 
and their network properties into account at the same time. The results 
of this study suggest that the direction of cortical interactions at the 
scalp level, measured by surface EEG, can provide useful information 
about ADHD and discriminate the associated brain dynamical states 
with the normal situation. In other words, the effective brain connec
tivity properties are affected by ADHD throughout EEG recordings. 
Having said that, one has to be aware of different interpretations be
tween the effective connectivity analysis of EEG signals at the scalp level 
with the analysis of the reconstructed EEG signals at the source level or 
intracranial EEG recordings. The scalp EEG results must be interpreted 

Fig. 4. The average of the connectivity matrices representing directed BNs in different frequency bands for ADHD subjects.  

Fig. 5. The average of the connectivity matrices representing directed BNs in different frequency bands for healthy control subjects.  

Table 2 
Results of statistical and ROC analyses of the six graph measures used in this study to characterize the directed BNs in different frequency bands. The asterisks represent 
the significant values after t-test testing: * and ** respectively indicate that p-value <0.05 and p-value <0.001. Acronyms are as follows: GE: Global efficiency, MWCC: 
Mean weighted clustering coefficient, AD: Average degree, MS: Mean strength, Tr: Transitivity, and PL: Path length.  

Frequency band Delta Theta Alpha Beta Gamma 

p-values AUCs p-values AUCs p-values AUCs p-values AUCs p-values AUCs 

GE ** 0.6090 ** 0.6460 ** 0.5253 ** 0.7535 * 0.5188 
MWCC ** 0.6013 ** 0.6020 * 0.5270 ** 0.7585 ** 0.5395 
AD ** 0.6194 ** 0.6577 ** 0.5294 ** 0.7534 * 0.5181 
MS ** 0.6194 ** 0.6577 ** 0.5294 ** 0.7534 * 0.5181 
Tr ** 0.6289 ** 0.6670 ** 0.5324 ** 0.7525 * 0.5188 
PL ** 0.6194 ** 0.6577 ** 0.5294 ** 0.7534 * 0.5181  
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with caution due the possible impact of volume conduction on the sig
nals and possibly, spurious relationships across EEG channels. There
fore, the next step of this study would be to investigate the causal 
relationships between EEG signals in the ADHD cohort at the source 
level where we have a closer access to the electrical activity of neuronal 
populations within the cortex. Once this verification is made, the 
adapted methodology in this study will have the capacity to be used in 
the clinical settings. Potential applications may include the 

neurofeedback settings for ADHD patients and evaluation of the func
tional brain connections over time for monitoring any improvement 
over the course of treatment. 

The cognitive visual task used in this study considers the behavior of 
ADHD children. The advantage of using a cognitive task in contrast to 
other types of stimuli such as sound is that an attention stimulus can 
highlight the potential difference between the ADHD group and control 
subjects better [36]. It is important to represent the ADHD children with 

Fig. 6. Box plots showing the values of the six graph measures in different frequency bands for the ADHD and healthy control subjects.  
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some amusing images during the task engagement so that the pictures 
can stimulate a significant cognitive load in them. Our results suggest 
that the maximum discrimination between the two groups is reflected 
across the beta frequency band of EEG which is known to be associated 
with changes in brain states during demanding activities [53]. The 
continuous nature of visual stimuli in the design of the EEG datasets in 
this study can also help intensifying the impact of the cognitive load on 
the subjects throughout the entire EEG recording sessions. As Fig. 3 il
lustrates, the average response time in both groups has been comparable 
and also, the number of incorrect answers to the stimuli (1.84 in controls 
and 2.04 in ADHD subjects) has been close [35]. 

Previous studies have reported different contributions of EEG fre
quency bands in ADHD and there does not seem to be a consensus about 
the role of EEG band powers in ADHD so far. For example [54], has 
reported increased EEG power in alpha and beta bands of the ADHD 
group in contrast to controls. In [55], a greater alpha power was 
observed in the resting-state EEG datasets of children with ADHD. In 
[56], a significant increase in the beta band power was observed at the 
EEG source level and across temporal lobe in the ADHD group. The 
authors of [57] reported a significant increase in the EEG theta band of 
ADHD subjects, more than what was observed in the EEG beta band 
power (i.e., an increased theta to beta ratio in the ADHD group 
compared to controls). In addition, a machine learning study [58] sug
gested that the best predictor of ADHD status in EEG recordings is 
associated with an increased power in delta, theta and low-alpha over 
centro-parietal regions, and in frontal low-beta and parietal mid-beta. 
Our results, illustrated in Figs. 4, and Fig. 5, and Table 2, puts 
emphasis on the discriminative role of the theta and beta band in ADHD. 
Having said that, the beta band represents a much more pronounced 
impact on the graph features of functional BNs in our study (see Fig. 6). 
It may be due to the nature of event-related EEG recordings used in the 
analysis. According to [35], the EEG datasets have been recorded from 
ADHD/control participants while they have been exposed to a contin
uous cognitive visual task including multiple emotions. It may have 
activated different functional BNs and influenced EEG power across 
different frequency bands. Consequently, the graph features of 
EEG-based effective BNs may represent the impact of multiple cognitive 
and behavioral activities in the brain. The findings of this study are in 
line with the results of an independent study published in [33] while this 
manuscript was being revised. 

5. Conclusion 

This study supports the hypothesis that effective brain connectivity is 
altered in children with ADHD and the amount of information transfer 
between scalp EEG channels in those subjects is significantly different 
compared to healthy subjects. It demonstrates the potential of EEG- 
based effective brain connectivity analysis for diagnosis of ADHD. The 
results of this study put weight on the importance of beta band in scalp 
EEG recordings of ADHD and its impact on different network features of 
effective brain connectivity. The adapted methodology in this study is 
not limited to ADHD and could be used to investigate other brain ab
normalities using EEG signals. 
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