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Abstract: Reinforced concrete (RC) flat slabs are widely employed in modern construction, and
accurately predicting their load-carrying capacity is crucial for ensuring safety and reliability. Existing
design methods and empirical equations still exhibit discrepancies in determining the ultimate load
capacity of flat slabs. This study aims to develop a robust machine learning model, specifically
the M5P model tree, for predicting the punching shear capacity of a RC flat slab without shear
reinforcement. A comprehensive dataset of 482 experimentally tested flat slabs without shear
reinforcement was gathered through an extensive literature review and utilized for the development
of the M5P model. The model takes into account influential parameters, such as slab thickness,
longitudinal reinforcement ratios, and concrete strength. The performance of the proposed M5P
model was compared with existing design codes and other empirical models. The comparison
highlights that the developed M5P model tree provides a more accurate and reliable prediction of the
punching shear capacity of RC flat slabs. This study contributes to the advancement of structural
engineering knowledge and has the potential to improve the design and safety assessment of concrete
flat slab structures.

Keywords: machine learning; reinforced concrete; flat slabs; punching shear capacity; MP5

1. Introduction

Reinforced concrete (RC) flat slabs are slabs with usually a uniform thickness and are
supported directly on columns without any downstand or upstand beams. They constitute
a popular construction choice owing to their architectural flexibility, as demonstrated
in [1] (Figure 1, adapted from [1]). However, their structural performance, particularly
in terms of punching shear capacity, has been a topic of concern and extensive research
in the field of structural engineering has been made. Flat slabs may be susceptible to
punching shear failure, which can be a brittle and sudden mode of failure that occurs
around the column–slab connection, which can result in severe consequences if not properly
addressed. Diagonal tensile cracks develop from a failure surface around the loaded area
of the slab, typically forming in the vicinity of the column–slab connection. These cracks
are a manifestation of the local interaction between bending and shear stresses, called
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punching shear stresses, which are caused by the concentrated forces transmitted from
the slab to the column. Failure in RC flat slabs due to punching shear typically occurs
along a truncated cone shape, which forms around the column–slab connection. Therefore,
accurately predicting and accounting for the punching shear capacity is essential to ensure
the safety and stability of RC flat slabs. The entire structure may be prone to sequential
failure. Various factors such as (i) concrete strength, (ii) the longitudinal reinforcement ratio
(the average area of the upper tensile flexural distributed reinforcements divided by the
effective depth of the slab in the punching shear zone), (iii) slab thickness, and (iv) loading
conditions need to be considered to determine their impact on capacity.
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Figure 1. Punching shear failure in RC flat slabs without shear reinforcement.

2. Literature Review

In recent years, several academics have proposed empirical formulas and analytical
models for predicting the punching shear resistance. Theodorakopoulos and Swamy [2]
presented an easy-to-understand analytical model, which was applied to 60 experimen-
tal slab–column connections, and the results were compared with previously developed
models. Elshafey et al. [3] created two condensed empirical formulations using 244 experi-
mental data points, and the examination of the prediction accuracies revealed that the two
suggested models were capable of generalizing the gathered experimental data.

Moreover, a formula for predicting punching shear resistance was introduced by El-
sanadedy et al. [4], based on the experimental results of 61 high-strength concrete slabs. The
empirical formula could accurately predict the punching shear resistance of concrete slabs,
making it an essential tool for designers and engineers to ensure the safety and stability
of RC structures. Also, various formulae have been presented in design codes, such as BS
8110-97 [5], ACI 318-19 [6], and Eurocode 2 [7], for predicting the punching shear resistance
of RC interior slabs. Moreover, a significant amount of experimental research has been
undertaken to determine the crucial factors affecting the punching shear resistance of these
slabs. In order to investigate the impact of input factors like the reinforcement ratio, column
size, and concrete strength on the punching shear resistance, Elstner and Hognestad [8]
conducted 39 experiments and found a considerable effect of concrete strength on the
punching shear resistance. Furthermore, the influence of slab thickness on the punching
shear resistance was explored by Baant and Cao [9], providing additional insight into the
structural behavior of RC interior slabs.

In recent years, the application of black-box machine learning (ML) and artificial
intelligence techniques has shown great promise in predicting complex structural behav-
iors [1,10–17]. These data-driven methods can have the potential to improve the accuracy
and reliability of punching shear capacity predictions by capturing intricate relationships
among the influencing factors. XGBoost was applied to predict the punching shear resis-
tance in RC interior flat slabs, achieving the best prediction compared to two other ML
models and various design codes [14]. The most significant input variable was shown to
be the effective depth of the slab (distance from the bottom face of the slab to the aver-
age plane of the upper tensile flexural distributed reinforcements in the punching shear
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zone). A graphical user interface was created for preliminary estimation. Other research
assessed the effectiveness of ML techniques in estimating the punching shear strength
of flat slabs without shear reinforcement, utilizing 380 experimental data points [1]. The
extreme gradient boosting model surpasses other models and current code provisions,
achieving a coefficient of variation of 0.09 and a coefficient of determination of 0.98. The
SHapley Additive exPlanation (SHAP) approach was used to elucidate the factors influenc-
ing the predictions [1]. In another study [16], an effective prediction model was developed,
chosen from eight ML-based models, to determine the failure mode of flat slabs based
on 610 experimental data points. XGBoost surpasses other models, achieving a 99.02%
accuracy rate. The SHAP analysis offers valuable understanding of the relationship be-
tween the failure mode and contributing factors. A study [12] examined design provisions
for RC flat slabs, identifying influential parameters through a sensitivity analysis. In this
study [12], a Bat-ANN hybrid model was developed for estimating the punching shear
strength, achieving a superior accuracy. Key parameters were assessed, highlighting the
importance of the flexural reinforcement. In the pursuit of predicting punching shear
resistance in reinforced concrete slabs, machine learning models such as artificial neural
networks, decision trees, random forests, and extreme gradient boosting made significant
strides [17]. Their predictive accuracy surpassed traditional design code models, marking
a remarkable advancement. Complementing these developments, a hybrid Extreme Learn-
ing Machine for Regression (EPR) technique emerged, melding AI, robust multivariate
techniques, and an Akaike weight-based method [18]. This innovative approach provided
an accurate, unbiased model for shear strength in RC beams. Simultaneously, the Symbolic
Regression—Modified Compression Field Theory (SR-MCFT), a hybrid grey-box model,
took a step further [19]. By integrating the modified compression field theory and machine
learning, it excelled in predicting punching shear resistance in Fiber-Reinforced-Polymer
(FRP)-reinforced slabs. The Evolutionary Polynomial Regression (EPR) added another
dimension to this field, successfully enhancing the prediction of shear strength in reinforced
concrete circular columns and refining existing models and empirical rules [20]. Lastly,
a unique hybrid model that combined Particle Swarm Optimization and Support Vector
Regression (PSO-SVR) showcased its predictive prowess, notably improving the prediction
of punching shear strength in two-way reinforced slabs and emphasizing the importance
of slab depth and thickness [21].

Despite the success of previously developed black-box ML models in predicting
the punching shear capacity of RC flat slabs, black-box models cannot generate explicit
equations or mathematical representations that elucidate the relationships between input
parameters and output predictions. It is crucial to consider models that offer a balance
between interpretability and complexity. This balance ensures that engineers and designers
can gain a comprehensive understanding of the relationships among various influencing
factors, while still benefiting from the enhanced predictive accuracy provided by advanced
ML techniques. M5P, a model-tree-based algorithm, presents a promising alternative as it
combines the simplicity of decision trees with the power of linear regression, allowing for a
greater interpretability without sacrificing predictive performance [22]. This unique combi-
nation enables practitioners to make informed decisions while leveraging the advantages
of ML in structural design and analyses.

The primary objective of this study was to develop and assess the performance of the
M5P model, a model-tree-based algorithm, in accurately predicting the punching shear
strength of RC flat slabs without shear reinforcement. To achieve this objective, this study
first gathered a comprehensive dataset of experimental results and relevant parameters
influencing the punching shear strength of RC flat slabs. This dataset was then used to
train and test the M5P model, ensuring its ability to capture the intricate relationships
among various influencing parameters, which are the (1) effective depth of the slab (d),
(2) longitudinal reinforcement ratio (ρ), (3) compressive strength of concrete (fc), (4) span–
depth ratio (λ) (the distance between the face of the support column and the edge of the
slab divided by the effective depth of the slab), (5) yield strength of reinforcement (fy), and
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(6) equivalent column width (b) defined latter. In addition, this research compared the
performance of the proposed M5P model with existing empirical formulas and analytical
models. This comparative analysis helps to demonstrate the effectiveness and advantages
of the M5P model in terms of predictive accuracy and interpretability. Finally, this research
investigated the sensitivity of the developed model to the input parameters. The sensitivity
analysis identified the most influential parameters on the punching shear strength of a
RC flat slab and their effect on the accuracy of the model. This information can be useful
for the design and optimization of RC flab slabs to achieve the desired level of punching
shear strength.

3. Materials and Methods

The methodology employed in this research relies on a widely recognized and practical
decision tree algorithm known as the M5P model tree. All modeling was performed using
Weka software (version 3.9.4) [23], a popular suite of machine learning software written
in Java. This powerful approach effectively combines the simplicity and interpretability
of decision trees with the predictive capabilities of linear regression models, providing a
robust and user-friendly tool for understanding complex relationships in data and making
informed decisions in various domains. The details of the algorithm, as well as the data
collection and pre-processing procedures, are discussed in this section.

3.1. M5P Model Tree Techniques

The M5P algorithm, an advanced and efficient technique, is well-suited for analyzing
complex systems characterized by a high dimensionality, encompassing a vast number of
attributes. Initially introduced by Quinlan [22] as the M5 algorithm, it was designed to
address classification and regression problems. Subsequently, Wang and Witten [24] refined
the M5 algorithm, resulting in what is commonly referred to as the M5P algorithm. This
improved algorithm excels at breaking down complex problems into simpler sub-problems
and generating a response that combines the solutions of these sub-problems. The M5P
method involves three key steps: constructing the initial tree, pruning it, and applying
smoothing techniques. This process relies on the divide-and-conquer strategy, which is
employed to partition the data space into smaller, more manageable subspaces. To further
illustrate this, the structure of a decision tree, built using the approach for dividing the
sample space with two input parameters, is depicted in Figure 2 to offer further context.
The resulting model tree resembles an inverted tree, with the leaves at the bottom and the
root positioned at the top. The divide-and-conquer strategy is employed to identify the
leaves, or subspaces (refer to Figure 2a). Subsequently, a multivariate linear regression
(MLR) model is established at each leaf (as shown in Figure 2b).

The decision tree structure in Figure 2a segregates the full dataset into distinct groups
using some splitting values. These values are determined to ensure accurate and efficient
data partitioning, utilizing input variables that optimize error reduction for each node. The
standard deviation reduction (SDR) is employed to calculate inaccuracies at individual
nodes as follows:

SDR = sd(T)−
n

∑
i=1

|Ti|
|T| sd(Ti) (1)

where sd refers to the standard deviation, Ti is the outcome of splitting the node based
on the specified split value and attribute, while the set T consists of instances that reach a
particular node. The splitting process terminates automatically if the output values of all
instances reaching the node differ by less than 5% of the original instance set’s standard
deviation, or when only a few instances remain. Upon constructing the tree, a multiple
linear regression (MLR) model is built in the lowest subspace. Overfitting is often an
unavoidable issue when generating the model tree and MLR model at each split. Usually, a
pruning method is used to address this issue. In order to identify and address the issue of
overfitting in the model, the algorithm thoroughly examines and derives a well-informed
projection of the expected errors contained within the testing dataset.
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For the training instances that reach each node, the average absolute errors between
the actual values and the expected response ones predicted with the unpruned tree are
determined. This process is conducted for every training instance that reaches each indi-
vidual node. Nonetheless, relying solely on this average value can lead to underestimating
the anticipated error for the validation dataset. This issue arises due to the fact that the tree
construction process is heavily dependent on the training dataset, which can inadvertently
cause a bias in the performance evaluation of the model. To account for this, the response
values are multiplied by the ratio (n + v)/(n × v), where v is the number of model attributes
that correspond to the output value at that node and n represents the number of training
data vectors that reach the node. Consequently, the algorithm can effectively remove
generated leaves with estimated errors exceeding those of their preceding nodes (parents).

The M5P method incorporates a unique smoothing phase that operates on several
leaves within the pruned tree, aiming to reduce the sudden discontinuity observed between
neighboring leaves, also referred to as classes. This approach involves a process where the
estimated value of each individual leaf undergoes filtration as it follows the path from the
leaf back to the root of the tree. In order to compute the value at every node throughout
this process, a specific formula is employed. This formula serves to merge the predicted
value generated using the linear model, which is uniquely associated with the particular
node in question.

P′ =
np + kq

n + k
(2)
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In this context, q represents the predicted value generated with the model at the given
node, while p denotes the prediction transmitted to the current node from a lower level. P′

refers to the predicted value passed upward to the subsequent higher node. n signifies the
number of training instances that have reached the preceding node, and k is a constant, as
described by Wang and Witten [24]. As depicted in Figure 2b, the M5P method yields a
sequence of multivariate linear equations, also known as rules, which serve to estimate the
target values effectively.

3.2. Data Collection and Pre-Processing

The dataset utilized for the calibration and validation of the M5P models, sourced
from Shen et al. [16], comprises 610 shear capacity tests on RC flat slabs without shear
reinforcement collected from 55 experimental studies conducted between 1956 and 2016.
These tests provide valuable information about various factors that influence the punching
shear capacity of a RC flat slab, such as concrete strength, the reinforcement ratio, and the
shear-span-to-depth ratio. This design choice aimed to focus the study on the punching
shear capacity of flat slabs without shear reinforcement, thus isolating the behavior of the
primary material components. Only flat slabs with failures primarily occurring due to
punching shear (482 points) rather than flexure were considered in this study. This criterion
ensured that the dataset accurately represented the performance of RC flat slabs under
punching-shear-dominated failure modes, enabling a more targeted investigation of the
factors affecting the punching shear capacity of RC flat slabs.

The available data were randomly divided into two sets: a training set for model
calibration, which was used to develop and optimize the predictive models, and an inde-
pendent validation set for model verification, which allowed for the assessment of each
model performance and generalizability on previously unseen data. This division strategy
ensured a thorough evaluation of the models’ capabilities in accurately predicting the
punching shear capacity of RC flat slabs across a wide range of scenarios. A stratified
sampling technique was employed to ensure that both subsets were representative of
the entire dataset in terms of the distribution of key variables. This approach enabled a
more robust evaluation of each model performance and generalizability. Typically, the
dataset was split into a 80:20 ratio, with the larger portion reserved for training and the
smaller portion for testing. Table 1 offers a comprehensive overview of the distribution and
range of values for each parameter in both sets, allowing for a better understanding of the
dataset characteristics.

Table 1. Summary of the key input parameters utilized in the model development and based on the
experimental datasets.

Data Category Statistics b (mm) * d (mm) * fc (MPa) * fy (MPa) * ρ * λ * Vu (kN) *

Training data Median 196.350 112.500 31.900 468.000 0.012 5.952 324.000
Mean 192.689 117.989 35.696 475.082 0.013 5.972 441.046

Minimum 40.055 29.970 9.401 250.000 0.003 0.612 24.000
Maximum 707.644 668.500 130.100 749.000 0.050 32.507 4915.000
Standard
deviation 99.133 62.842 19.641 112.799 0.007 3.170 456.952

Testing data Median 200.000 100.000 29.546 453.600 0.013 5.685 330.000
Mean 193.885 111.895 33.209 453.680 0.015 5.910 406.104

Minimum 51.000 33.166 11.771 250.000 0.003 1.000 44.000
Maximum 520.000 400.000 98.000 749.000 0.073 13.551 2224.000
Standard
deviation 90.321 55.409 14.841 109.773 0.009 2.144 361.110

* b = equivalent column width; d = slab effective depth; fc = concrete strength; fy = yield strength of reinforcement,
ρ = longitudinal reinforcement ratio; λ = span–depth ratio; Vu = punching shear capacity.

For enhanced visualization and a deeper understanding of the relationships between
input and output parameters, a matrix–plot is provided in Figure 3. This plot presents
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a series of scatterplots showcasing the pairwise relationships among the input variables
and their correlation with the output parameter, which in this case is the punching shear
capacity of the RC flat slab. The diagonal plots in this matrix showcase the histograms
of output and input parameters, representing the frequency distribution of each variable
across the entire dataset. It is worth mentioning that the column size is represented as a
parameter using the equivalent column width (b); a circular (or rectangular) column was
transformed into a corresponding square column that maintains an identical critical shear
perimeter. As it can be noticed in Table 1, the depth (d) of the slabs in the training set
ranges from 29.970 mm to 668.500 mm, with an average of 117.989 mm and a standard
deviation of 62.842 mm. In the testing set, the effective depth varies between 33.166 mm and
400.000 mm, with a mean of 111.895 mm and a standard deviation of 55.409 mm. Table 1
also shows that the shear span–depth ratio (λ) has similar distributions in both the training
and testing sets, with comparable mean values and standard deviations. The concrete
compressive strength (fc) and reinforcement ratio (ρ) values in Table 1 reveal that the dataset
covers a wide range of concrete strengths and reinforcement quantities, which is essential
for developing models that can accurately predict the punching shear capacity in various
real-world scenarios. Lastly, the shear force (Vu) values demonstrate a relatively wide range
of measured punching shear capacities for both the training and testing sets, indicating that
the dataset is diverse and representative of different failure modes and load conditions. It is
worth noting that the derived predictive models may exhibit a higher degree of reliability
within the ranges mentioned where most data points are concentrated. This is because
the models have been extensively trained and validated on a larger number of samples
within these parameter intervals. Such reliability is crucial for practical applications, as
it guarantees accurate predictions for the scenarios most frequently found in real-world
design and construction practices.
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4. Model Results
4.1. M5P-Derived Models

The M5P algorithm is a method that segments data spaces into numerous smaller
regions, known as subspaces. Within each subspace, a local multivariate linear regression
(MLR) model is constructed. However, relying solely on local MLR models for predicting
outcomes is a shortcoming of the M5P algorithm. To address this issue, we convert all input
output and input variables into a logarithmic form. Subsequently, the M5P algorithm is
refined within this logarithmic space. Following this transformation, the local MLR models
in each individual subspace are restructured to enhance their predictive capabilities and
overall accuracy as follows:

Vu = a′(b)b′(d)c′( fc)
d′( fy

)e′
(ρ) f ′(λ)g′ (3)

where a′, b′, c′, e′, f ′, and g′ are constants. The M5P algorithm is a tree-based model that
generates regression rules for predicting the target variable. These rules are quite effective
in capturing the underlying relationship between the input parameters and the structural
strength. The M5P algorithm is illustrated in Figure 4. The developed rules are as follows:

LM1 : Vu = 0.0127(b)0.5974 (d)1.4115 ( fc)
0.5007 (ρ)0.1877(λ)−0.1634 (4)

LM2 : Vu = 1.4699(b)0.3491(d)0.8836 ( fc)
0.3137( fy

)0.009
(ρ)0.314 (λ)−0.1889 (5)

LM3 : Vu = 0.0855(b)0.335 (d)1.2632( fc)
0.3025 ( fy

)0.2581
(ρ)0.3736(λ)−0.1823 (6)
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In the analysis of the results, it was observed that d (slab’s depth) was identified as
the primary factor for classification purposes. The equations were differentiated based
on the values of d = 82.79 mm and 133.66 mm. Given these selected splitting parameters,
it is possible to deduce that the RC flat slab depth plays a crucial role in predicting the
maximum punching shear strength. This observation aligns with previous subsection
results, demonstrating that the correlation coefficient (R) between d and Vu stands out as
significantly higher when compared to the majority of the other parameters evaluated,
further validating the relationship as depicted in Figure 4. It is crucial to acknowledge that
the chosen splitting value may not always possess a distinct physical interpretation, as it
is determined with the objective of minimizing the prediction error, as per reference [25].
Nevertheless, the majority of the physical interpretations that are derived from these
equations align with the principles of structural engineering.
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4.2. Performance Analysis

The accuracy and reliability of a model developed using data mining approaches are
highly dependent on the number of data points used. Frank and Todeschini [26] proposed
a minimum data-to-variable ratio of 3, with 5 being a safer value. This indicates that a
large dataset is necessary to develop a reliable model using data mining approaches. In
the present study, the high data-to-variable ratio of 96.4 provided a solid foundation for
the developed M5P algorithm and enabled it to make accurate predictions. The correlation
coefficient (R) is a widely used measure of the correlation between observed and predicted
values. However, it may not always be reliable, especially when the data range is wide,
and data points are distributed around their mean. In such cases, the R2 parameter is a
more suitable measure to evaluate the correlation between observed and predicted values.
In the present study, the R2 parameter was used as an unbiased estimate to measure the
degree of correlation between the observed and predicted values. The use of R2 provides
a more accurate representation of the correlation between the observed and predicted
values and helps to ensure the reliability of the model. In addition to R2, Root Mean Square
Error (RMSE) and Mean Absolute Error (MAE) are both used as statistical error metrics
to measure the absolute difference between predicted and actual (measured) values in a
dataset. These error metrics are commonly used in machine learning and data mining
to evaluate the performance of predictive models. The lower the values of RMSE and
MAE, the closer the predicted values are to the actual values, indicating a better model
performance. The use of these parameters ensures that the model predictions are as accurate
as possible.

The performance of the developed M5P algorithm on both the training and testing
datasets was evaluated in this study. The results are presented in Table 2, which provides
statistical error parameters commonly used to evaluate ML algorithms, and Figure 5, which
provides a graphical representation of the algorithm performance.

Table 2. M5P model performance in predicting the punching shear capacity of RC flat slab.

Statistics RMSE R R2 MAE

Training 77.1034 0.9857 0.9716 47.9516
Testing 71.9993 0.9806 0.9616 48.3483
Total 76.1038 0.9849 0.9700 48.0491
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Figure 5, which is a scatter plot, depicts the predicted values of the M5P algorithm
versus the actual values for both the training and testing datasets. The optimal line in
the scatter plot represents perfect agreement between the predicted and actual values.
Therefore, the closer the points are to the optimal line, the better the algorithm performance.
The little scattering observed around the optimal line indicates that the M5P algorithm
predicted values that align well with the actual values for both datasets.
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In the scatter plot for the training dataset, the points are tightly clustered around the
optimal line, indicating that the algorithm predicted values that are close to the actual
values. Similarly, in the scatter plot for the testing dataset, the points are also clustered
around the optimal line, albeit with slightly more scatter than the training dataset. The
scatter observed around the optimal line in both datasets is relatively small, indicating that
the algorithm can accurately predict the values of interest.

Table 2 provides statistical error parameters that further support the conclusion that
the developed M5P algorithm performs well on both datasets. The MAE and RMSE
values for the training and testing datasets are relatively low, indicating that the algorithm
predicted values that are close to the actual values. Additionally, the R and R2 values for
both datasets suggest that the algorithm ability to capture the variability of the data is good.

When considering the entire dataset, the M5P algorithm exhibited a total MAE of
48.0491, RMSE of 76.1038, R of 0.9849, and R2 of 0.9700. These values are within an
acceptable range, indicating that the developed algorithm performs well in predicting the
values of interest.

To gain a deeper understanding of the M5P model accuracy and effectiveness, Figure 6
provides a comparison between predicted and experimental punching shear strength
values. This comprehensive visual representation includes data from both the training and
testing datasets, allowing for a more thorough evaluation of the model performance from
other alternative methods.
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mental measurements of punching shear strength for both training and testing data.

Also, the cross-validation method was applied on our model to evaluate its robustness
across different subsets of the data. The data were divided into five folds, with each
fold serving as a test set once while the remaining folds served as the training set. The
performance was measured using three key metrics: R2, RMSE, and MAE. The results can
be seen in Table 3.

Our model demonstrated consistent performance across all folds with average R2,
RMSE, and MAE values of 0.9517, 90.85, and 55.32, respectively. The R2 values range
from 0.9410 to 0.9697, indicating that our model explains between 94.1% and 96.97%
of the variance in the dependent variable, which is a strong indication of the model’s
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predictive power. The average R2 of 0.9517 suggests that the model, on average, explains
approximately 95.17% of the variance in the dependent variable across the folds.

Table 3. Results derived from a five-fold cross validation.

Folds
Performance Measures

MAE (MPa) R2 RMSE (MPa)

66.2896 0.9430 100.1055 Fold 1
51.2254 0.9581 83.0453 Fold 2
38.7523 0.9465 56.0006 Fold 3
57.7699 0.9410 89.9521 Fold 4
62.5797 0.9697 125.1674 Fold 5
55.3234 0.9517 90.8542 Average
10.8431 0.0121 25.1970 SD

RMSE and MAE are measures of prediction error. In our cross-validation, the RMSE
varied between 56.00 and 125.16, with an average of 90.85. The MAE ranged between 38.75
and 66.28 with an average of 55.32. The standard deviations (SD) of R2, RMSE, and MAE
across folds were 0.0121, 25.20, and 10.84, respectively, indicating a reasonable consistency
in performance across folds.

In conclusion, regarding the consistency of performance metrics across cross-validation
folds and the comparable results from the train, the test split indicates that our model is
robust and generalizable across different data subsets.

4.3. Comparative Evaluation of the Newly Formulated M5P Model and Various Other Machine
Learning Models

In an effort to assess the predictive power of the developed M5P model, it is systemati-
cally compared against two other prevalent machine learning models. The first one is a
black-box model, specifically the Random Forest (RF) model, and the second is a white-box
model, namely Linear Regression (LR). This comparative analysis is conducted within the
context of predicting the punching shear resistance of flat slabs, using a comprehensive
experimental database for a robust evaluation. Figure 7 illustrates a graphical representa-
tion showcasing the correlation between the observed experimental shear strength and the
predicted shear strength. These correlations are derived from data present in the testing
evaluation database. The graph incorporates a tolerance of ±20%. Generally, it can be
observed that the capacity predicted with the different methods diverges from the ‘perfect
line’. This ‘perfect line’ is conceptually defined as the line where the actual values align
perfectly with the predicted values. The plot illustrates that the predictions generated with
the M5P model are generally less scattered when compared to other machine learning
models. A majority of these predictions comfortably fit within the ±20% boundaries of the
line of equality, also known as the perfect line.

Table 4 and Figure 8 offer a comprehensive statistical analysis comparing the proposed
machine-learning (ML)-based models for shear strength. This comparison is conducted
using the testing database. Additionally, Figure 8 visually represents a comparison between
the M5P model and other machine learning models, focusing on RMSE and MAE results.
Upon reviewing the data from both Table 4 and Figure 8, it is clear that the M5P model
outperforms the rest in terms of having the highest R2 values and the lowest values for
both RMSE and MAE, amongst all models examined.

Table 4. Statistical characteristics of both M5P and other machine learning models (analyzed using
the testing dataset).

Parameters M5P RF LR

RMSE 71.9993 92.6412 121.9088
R2 0.9616 0.9339 0.8930

MAE 48.3483 58.9602 95.4274
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4.4. Design Code and Empirical Formulas

The equation for the punching shear resistance for RC flat slabs without shear rein-
forcement in ACI 318-19 [6] is as follows:

Vn = min
[

1
3

,
1
6

(
1 +

2
β

)
,

1
12

(
2 +

αsd
bo

)]
λs
√

f ′cbod (7)

The ACI 318-19 equation accounts for several crucial factors that affect the overall
punching shear strength of the slab. These factors include the column-type-related factor
(αs), ratio of the long to short sides of the column, concentrated load, or reaction area
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(β), and the size effect modification factor (λs). The inclusion of these parameters in the
equation represents a significant update from the previous version of the code, ACI 318-14.

The size effect modification factor (λs =
√

2/(1 + 0.004d) ≤ 1) is particularly note-
worthy as it acknowledges the impact of the slab depth (d) on the punching shear strength.
This factor has a maximum value of 1, ensuring that the size effect does not overestimate
the punching shear resistance. The column-type-related factor (αs) differentiates between
interior, edge, and corner columns, assigning distinct values for each column type. In the
given study, only interior columns are considered, resulting in an αs value of 40. This factor
recognizes that the punching shear stress distribution around a column varies depending
on its location within the slab. Finally, bo represents the critical section perimeter (in mm)
and is calculated as follows:

bo =


4(c + d) for square columns

π(c + d) for circular columns
2(c1 + c2 + 2d) for rectangular columns

(8)

where c denotes the dimensions of the square column section or the diameter of a circu-
lar column.

The equations from Eurocode 2 [7] for the punching shear strength for RC flat slabs
without shear reinforcement is calculated as follows:

Vu = max

{
0.18 · ξ · (100 · ρ · fck)

1/3 · b0 · d
0.035 · ξ3/2 ·

√
fck · b0 · d (9)

The above equation considers the size effect factor (ξ), the characteristic cylinder
strength of concrete ( fck), and the reinforcement ratio (ρ) to determine the punching shear

resistance (Vn). The size effect factor (ξ =

(
1 +

√
200
d

)
≤ 2) accounts for the influence of

the slab depth on the punching shear resistance, similar to the λs factor in ACI 318-19, but
with a different formulation. The reinforcement ratio (ρ) plays a crucial role in Eurocode 2,
whereas it is not explicitly included in the ACI 318-19 equation. This equation is valid when
ρ ≤ 0.02. Additionally, the perimeter of the critical section (bo) represented in Equation (9)
is calculated differently in Eurocode 2 when compared to ACI 318-19:

b0 =

{
4(c + πd) for square columns
π(c + 4d) for circular coltmns

(10)

The equation for the punching shear resistance provided by BS 8110-97 [5] for RC flat
slabs without shear reinforcement is calculated as the below:

Vc = 0.79k
(

100ρt
fcu

25

) 1
3
b0d, ρ ≤ 3% (11)

This equation incorporates factors like the reinforcement ratio (ρt), cubic compressive
concrete strength ( fcu), and effective depth of the slab (d) to determine the punching shear
resistance (Vc). The critical perimeter (b0) is calculated differently in BS 8110-97 when
compared to Eurocode 2 and ACI 318-19, as it assumes a rectangular shape at a distance of

1.5 d from each column face. The factor k =
(

400
d

)1/4
, which accounts for the size effect, has

a distinct formulation compared to the size effect factors in both Eurocode 2 and ACI 318-19.
Elshafey et al.’s [3] approach for determining the punching shear resistance of RC

flat slabs without shear reinforcement offers an alternative method when compared to
established design codes such as ACI 318-19, Eurocode 2, and BS 8110-97. Elshafey et al.’s
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approach shares the same critical perimeter (b0) as ACI 318-19. The key equations from
these authors are as follows:

Vc = vc A0 (12)

vc = 0.51 f 0.41
c ρ0.38

t k (13)

k =

(
250
d

)0.1
(14)

Ao = 4(c + d)d (15)

Elsanadedy et al. [4] propose an alternative method for determining the punching
shear resistance (Vc) in RC flat slabs without shear reinforcement, which stands apart from
other established design codes such as ACI 318-19, Eurocode 2, and BS 8110-97. In this
approach, the punching shear resistance is calculated using unique equations and factors
that incorporate several common parameters.

The key equation in Elsanadedy et al.’s approach is

Vc = 0.127 3
√

f ′c
√

ρt fy

(
1 +

8d
b0

)√
1 +

125
d

bod (16)

Chetchotisak et al. [27] presented a distinct approach for calculating the punching
shear strength (Vc) in RC slab–column connections without shear reinforcement. They
gathered data from 342 slab–column connections and used multiple linear regression to
develop a model in logarithmic space. Their method provides an alternative to established
design codes, such as the ones previously referred to.

The key equation in Chetchotisak et al.’s approach is

Vn = 92.43
(

f ′c
)1.21

(
1

%ρ

)1.47

(bo)
0.42
(

d)1.35
(

k)4.66 (17)

In this method:
f ′c is the concrete compressive strength.
ρt denotes the reinforcement ratio.
b0 (mm) is the critical shear perimeter, as specified in ACI 318-14.
d is the effective depth of the slab.
k is an additional factor calculated as k =

√
(nρ)2 + 2(nρ) − (nρ), with n = Es/Ec =

2× 105/4700
√

f ′c .

4.5. Comparison with Previously Developed Models

Table 5 provides a comparison of statistical error parameters for the M5P model and
other available punching shear design equations described in the previous section. The
inclusion of the mean value (µΩ) and coefficient of variation (COVΩ) of the ratio of the
actual punching shear strength to the model results (Ω = Vn,test/Vn,pred) in addition to
RMSE and R2 values is important. These parameters help determine whether the model
overestimates or underestimates the punching shear strength and provide an evaluation of
the prediction model accuracy and precision, respectively. Accurate predictions must have
µΩ values close to 1 and low COVΩ values.

The results in Table 5 indicate that the proposed M5P model outperforms all other
models. While the performances of the Eurocode 2 [7] and Chetchotisak et al. models are
reasonable, the M5P model shows significant improvements. Compared to the Chetchotisak
et al. model, which is considered the most precise model among the design equations, the
M5P model shows a significant reduction of 24.1% and 18.6% in terms of RMSE and MAE
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values, respectively. The µΩ and COVΩ values for the M5P model are also notably lower
than those from the other models, indicating a better model performance.

Table 5. Accuracy of earlier models for predicting the punching shear strength in comparison with
M5P.

Predicted Model RMSE MAE R2
Statistical Properties of Vactual/VM5P

µΩ SD COVΩ % Min Max

ACI 318-19 [6] 181.7370 118.6216 0.8803 1.4486 0.4225 29.1678 0.5641 4.2303
BS 8110-97 [5] 169.9748 112.9098 0.9595 1.3571 0.3319 24.4572 0.7472 4.1163

Eurocode 2 (EC2) [7] 105.8192 71.4915 0.9571 1.2459 0.3368 27.0321 0.7057 3.9481
Elshafey et al. [3] 122.1256 72.7415 0.9392 1.0526 0.2811 26.7070 0.4951 3.3695

Elsanadedy et al. [4] 108.3236 68.2791 0.9503 1.0894 0.2935 26.9456 0.4587 3.2054
Chetchotisak et al. [27] 100.7650 59.1147 0.9579 0.9874 0.2416 24.4647 0.5431 3.0663

M5P in this study 76.3815 48.1163 0.9700 1.0147 0.1705 16.8060 0.6161 1.8585

The experimental dataset under consideration encompasses a diverse range of material
properties and member sizes. To account for this variety, the normalized punching shear
resistance was calculated based on the concrete compressive strength (fc), effective depth
(d), and critical section (bo) of Eurocode 2 (EC2) [13] since this code performs better than
the other two building codes evaluated in this study.

For the M5P model and the experiments, the normalized punching shear resistance
was determined using the method prescribed using Eurocode 2 (EC2) design code for
identifying the critical section and concrete compressive strength. In order to evaluate the
performance of the models, the Root Mean Squared Error (RMSE) value was employed
as the assessment metric. Figure 9 presents the best-fit lines and their corresponding
RMSE values for each model. Upon examining these values, it becomes apparent that
the M5P model boasts a smaller RMSE compared to the Eurocode 2 (EC2) design code.
This suggests that the M5P model demonstrates a superior accuracy in predicting the
normalized punching shear resistance. The RMSE values for the M5P model and Eurocode
2 (EC2) stand at 0.0950 and 0.1568, respectively, indicating a significant difference in their
predictive capabilities. This considerable gap in RMSE values highlights the improved
performance of the M5P model in comparison to the Eurocode 2 (EC2) design code when
it comes to predicting the normalized punching shear resistance. Furthermore, a closer
look at the stress unit in Figure 9 reveals some considerable discrepancies between the
experimental and predicted results. These differences suggest that the parameters utilized
for normalization might not adequately represent the characteristics of punching shear
strength. This observation underscores the need for the further investigation and refinement
of the normalization parameters to improve their ability to capture the essential features of
punching shear strength.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19 
 

Table 5. Accuracy of earlier models for predicting the punching shear strength in comparison with M5P. 

Predicted Model RMSE MAE R2 
Statistical Properties of Vactual/VM5P 

μΩ SD COVΩ % Min Max 

ACI 318-19 [6] 181.7370 118.6216 0.8803 1.4486 0.4225 29.1678 0.5641 4.2303 

BS 8110-97 [5] 169.9748 112.9098 0.9595 1.3571 0.3319 24.4572 0.7472 4.1163 

Eurocode 2 (EC2) [7] 105.8192 71.4915 0.9571 1.2459 0.3368 27.0321 0.7057 3.9481 

Elshafey et al. [3] 122.1256 72.7415 0.9392 1.0526 0.2811 26.7070 0.4951 3.3695 

Elsanadedy et al. [4] 108.3236 68.2791 0.9503 1.0894 0.2935 26.9456 0.4587 3.2054 

Chetchotisak et al. [27] 100.7650 59.1147 0.9579 0.9874 0.2416 24.4647 0.5431 3.0663 

M5P in this study 76.3815 48.1163 0.9700 1.0147 0.1705 16.8060 0.6161 1.8585 

The experimental dataset under consideration encompasses a diverse range of material 

properties and member sizes. To account for this variety, the normalized punching shear 

resistance was calculated based on the concrete compressive strength (fc), effective depth (d), 

and critical section (bo) of Eurocode 2 (EC2) [13] since this code performs better than the 

other two building codes evaluated in this study. 

For the M5P model and the experiments, the normalized punching shear resistance 

was determined using the method prescribed using Eurocode 2 (EC2) design code for iden-

tifying the critical section and concrete compressive strength. In order to evaluate the per-

formance of the models, the Root Mean Squared Error (RMSE) value was employed as the 

assessment metric. Figure 9 presents the best-fit lines and their corresponding RMSE values 

for each model. Upon examining these values, it becomes apparent that the M5P model 

boasts a smaller RMSE compared to the Eurocode 2 (EC2) design code. This suggests that 

the M5P model demonstrates a superior accuracy in predicting the normalized punching 

shear resistance. The RMSE values for the M5P model and Eurocode 2 (EC2) stand at 0.0950 

and 0.1568, respectively, indicating a significant difference in their predictive capabilities. 

This considerable gap in RMSE values highlights the improved performance of the M5P 

model in comparison to the Eurocode 2 (EC2) design code when it comes to predicting the 

normalized punching shear resistance. Furthermore, a closer look at the stress unit in Figure 

9 reveals some considerable discrepancies between the experimental and predicted results. 

These differences suggest that the parameters utilized for normalization might not ade-

quately represent the characteristics of punching shear strength. This observation under-

scores the need for the further investigation and refinement of the normalization parameters 

to improve their ability to capture the essential features of punching shear strength. 

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

RMSEM5P= 0.0950

RMSEEC2= 0.1568

 EC2

 M5P

V
p

re
d

 /b
o
 d

 f
1

/3
ck

Vexp/bo d f1/3
ck

 

Figure 9. Comparison of the normalized punching shear resistance results between M5P and EC2. 

  

Figure 9. Comparison of the normalized punching shear resistance results between M5P and EC2.



Appl. Sci. 2023, 13, 8325 16 of 19

4.6. Model Error Susceptibility to Input Variables

An ideal predictive model should exhibit no discernible correlation or pattern between
its input design variables and the resulting model error, as indicated in reference [28]. As
per reference [29], correlation coefficients can be interpreted as follows: coefficients from 0.4
to 0.6 demonstrate moderate correlations, those from 0.2 to 0.4 indicate weak correlations,
and coefficients ranging from 0 to 0.2 signify very weak correlations. In order to delve
deeper into the predictive capabilities of the proposed equation, it is crucial to evaluate
the model error trend in relation to the primary design variable, as illustrated in Figure 10.
Upon examining the figure referred to, it becomes evident that the M5P-based strength
model boasts a high level of accuracy, with no significant trends observed in connection
with the design parameters. This suggests that the model is effective in maintaining a low
correlation between input design variables and model error, adhering to the principles of
an ideal predictive model.
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4.7. Parametric and Sensitivity Analyses

In the quest to understand the influence of each separate input variable on the predic-
tion of the punching shear strength utilizing the M5P-based method, a thorough sensitivity
analysis was carried out. The sensitivity analysis comprehensive approach proved in-
strumental in uncovering the most significant factors that influenced the punching shear
strength predictions. By systematically excluding input variables and analyzing the model
performance, researchers were able to identify areas for improvement and refine the model
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for more accurate results. The analysis involved methodically excluding individual input
variables and using the remaining data for the development and evaluation of the pre-
dictive model. This approach enabled researchers to pinpoint the most significant factors
that played a role in the prediction of the punching shear strength. Table 6 demonstrates
the impact of individual input variables on the M5P model performance, considering the
percentage changes in R2, RMSE, and MAE values for both the training and testing sets
when specific input variables are excluded. As anticipated, the most consequential variable
among the inputs affecting the punching shear strength proved to be the effective depth
of the slab (d). Excluding the effective depth (d) led to the most significant reductions in
performance across all measures: R2 decreased by 32.28% for the training set and 38.91% for
the testing set, while RMSE increased by 252.7% and 218.0%, and MAE increased by 161.1%
and 182.5% for the training and testing sets, respectively. These substantial reductions
emphasize the crucial role of the effective depth of the slab (d) in the model. On the other
hand, excluding the yield strength of reinforcement ( fy) had the least impact on perfor-
mance: R2 decreased by 1.87% for the training set and 2.18% for the testing set, while RMSE
increased by 7.45% and 4.88%, and MAE increased by 0.77% and 2.12% for the training and
testing sets, respectively. The relatively smaller changes in performance metrics indicate a
lower influence of the yield strength of reinforcement ( fy) on the model compared to other
variables. This consistency provided further insights into the relationship between the
input variables and their influence on the prediction of the punching shear strength, thereby
allowing researchers to better understand the underlying mechanisms and optimize the
model accordingly.

Table 6. Effect of input variables on the performance of the proposed M5P model.

Excluded
Variables

Input
Variables

Training Set Testing Set

R2 RMSE MAE R2 RMSE MAE

None (b)(d)(fc)(fy)(ρ)(λ) 0.9857 77.1034 47.9516 0.9806 71.9993 48.3483

(b) (d)(fc)(fy)(ρ)(λ) 0.9404
(−4.59%)

116.3163
(+50.9%)

64.0720
(+33.6%)

0.9222
(−5.95%)

108.6096
(+50.85%)

68.4123
(+41.6%)

(d) (b)(fc)(fy)(ρ)(λ) 0.6676
(−32.28%)

271.8977
(+252.7%)

125.1944
(+161.1%)

0.5988
(−38.91%)

228.9639
(+218.0%)

136.6226
(+182.5%)

(fc) (b)(d)(fy)(ρ)(λ) 0.9171
(−6.96%)

140.4382
(+82.2%)

72.2165
(+50.6%)

0.9383
(+4.31%)

93.0885
(+29.3%)

60.4217
(+25.0%)

(fy) (b)(d)(fc)(ρ)(λ) 0.9673
(−1.87%)

82.8514
(+7.45%)

48.3227
(+0.77%)

0.9592
(−2.18%)

75.5153
(+4.88%)

49.3749
(+2.12%)

(ρ) (b)(d)(fc)(fy)(λ) 0.9017
(−8.52%)

152.1536
(+97.4%)

78.1118
(+62.9%)

0.9052
(−7.69%)

113.9448
(+58.3%)

70.9103
(+46.7%)

(λ) (b)(d)(fc)(fy)(ρ) 0.9698
(−1.61%)

79.5789
(+3.22%)

48.8820
(+1.94%)

0.9456
(−3.57%)

84.1065
(+16.8%)

55.4452
(+14.7%)

5. Conclusions

This study aimed to develop an accurate and reliable M5P-tree-based model to predict
the punching shear capacity of RC flat slabs without shear reinforcement. The motivation
behind the development of this model was to address the limitations of existing methods
and provide a more comprehensive tool for structural engineers. The key findings of the
study and the limitations of the research are summarized below.

• The M5P algorithm outperformed existing models and design codes, providing more
accurate predictions for the punching shear strength. This improved accuracy could
lead to more efficient designs and increased safety in RC structures.

• The effective depth of the slab (d) was identified as the most significant factor af-
fecting the punching shear strength, which is consistent with previous studies and
engineering experience.

• The M5P model demonstrated a high level of accuracy, with a low correlation between
input design variables and model error. This is an essential characteristic for an ideal
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predictive model, as it ensures that the predictions are not significantly influenced by
irrelevant factors.

• The sensitivity analysis indicated that the effective depth of the slab (d) had the most
significant impact on the model performance, while the yield strength of reinforce-
ment (fy) had the least impact. This information can be used to prioritize design
considerations and improve the overall efficiency of the design process.

As limitations of this research, the following ones can be stated:

• The dataset used for the development and validation of the M5P model was limited in
size and scope, which may affect the generalizability of the results. Future research
could benefit from larger and more diverse datasets, including slabs with different
reinforcement configurations and materials.

• This study focused on the prediction of punching shear capacity without considering
other failure modes or serviceability requirements. This may limit the model applica-
bility in certain scenarios, where additional factors need to be taken into account.

• The M5P model does not directly account for the influence of construction quality,
environmental conditions, or long-term deterioration on the punching shear capacity.
These factors may have significant impacts on the performance of RC flat slabs and
should be considered in future research.

Despite these limitations, the M5P model presented in this study holds significant
potential for practical application in the field of structural engineering. By offering a
robust and accurate tool for predicting the punching shear capacity of RC flat slabs without
shear reinforcement, this model can help engineers in designing more efficient and safer
structures. However, it is essential to recognize the limitations and scope of the model and
to continue refining and expanding it through further research and collaboration among
professionals in the field.
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