
Article citation info:  
Rashid ZH, Sarhan RA, Hassan MS. Arduino-based implementation of kinematics for a 4 DOF robot manipulator using artificial neural 

network. Diagnostyka. 2024;25(1):2024114. https://doi.org/10.29354/diag/184235.  

1 

1 

  

DIAGNOSTYKA, 2024, Vol. 25, No. 1 
e-ISSN 2449-5220 

DOI: 10.29354/diag/184235  

  

 

ARDUINO-BASED IMPLEMENTATION OF KINEMATICS FOR A 4 DOF ROBOT 

MANIPULATOR USING ARTIFICIAL NEURAL NETWORK 

 

Zaid Hikmat RASHID * , Riyadh Ahmed SARHAN , Mohammed Salih HASSAN  

Al-Furat Al-Awsat Technical University, Technical Institute of Al-Mussaib, Iraq 
* Corresponding author: zhr.1986@atu.edu.iq  

 
Abstract  

Real-time motion control is basically dependent on robot kinematics analysis where there is no unique 

solution of the inverse kinematics of serial manipulators. The predictive artificial neural network is a powerful 

one for finding appropriate results based on training data. Therefore, an artificial neural network is proposed to 

implement on Arduino microcontroller for a 4-DOF robot manipulator where the inverse kinematics problem 

was partitioned to suit the low specification of the board CPU. With MATALB toolbox, multiple neural 

network configuration based were trained and experienced for the best fit of the dimensionless feedforward 

data that is obtained from the forward kinematics of reachable workspace with average MSE of 6.5e-7. The 

results showed the superior of the proposed networks reducing the joints error by 90 % at least with comparing 

to traditional one. An Arduino on-board program was developed to control the robot independly based on pre 

validated parameters of the network. The experimental results approved the proposed method to implement the 

robot in real time with maximum error of (± 0.15 mm) in end effector position. The presented approach can be 

applied to achieve a suitable solution of n-DOF self-depend robot implementation using micro stepping 

actuators. 
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List of Symbols/Acronyms 

  
ci – cos(qi); 

cij – cos(qi+qj); 

DH – Denavit-Hartenberg; 

DOF – Degree of freedom; 

MLP – multi-layer perceptron; 

MSE – Mean sqaur erroe; 

NN – Nueral network; 

Rij – Rotation matrix element; 

si – sin(qi); 

sij – sin(qi+qj); 

T – Transformation matrix; 

  

1. INTRODUCTION 

  

Finding an accurate and dependable kinematics 

solution is the main challenge in robotic arm motion 

control. Modern artificial intelligence has been 

involved with robotic control technology. It has 

significant performance benefits like precise control 

and faster computation.  

In general, several approaches were presented to 

deal with the nonlinearity of robots’ kinematics 

equations. In comparison to the forward kinematics 

of a serial manipulator, inverse kinematics solutions 

present numerous challenges. By Denavit-

Hartenberg (DH) method the forward kinematic is 
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directly derived. The inverse kinematics can be 

resolved analytically, geometrically, or 

iteratively[1]. For familiar types of manipulators, the 

kinematics is modeled in direct steps[2]. For a 

multiple Degree of Freedom (DOF) or redundant 

robot or singularity-free path planning, an artificial 

training may be required to resolve the kinematics. 

F.A. Raheem et al [3] proposed a multilayer 

perceptron structure by using a back propagation 

training algorithm to find the required joint angle for 

the end effector position. C. Kenshimov et al [4] 

trained a multi-layer perceptron neural network 

(MLPNN) for a 4-DOFs INMOOV manipulator to 

investigate the desired set of angle position from a 

given set of end effector pose, where the data base 

on the iterative logic of solving the inverse 

kinematics, the experimental results showed an 

acceptable mapping of robot workspace with 95.6% 

fit for all joints angles. For a 4-DOFs SCARA robot, 

P. Jah and B. Biswal [5] studied the application of 

MLP, they observed that the Neural Network (NN) 

minimized the joints variables errors and improves 

the performance index. The feed forward neural 

network with two layers is used to track specific 

trajectory by resolving inverse kinematics of three 

link planner robot based on input-output data[6]. A. 

Almusawi et al [7] suggested a new Artificial Neural 
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Network (ANN) to resolve the 6-DOF manipulator's 

inverse kinematics, by adding the recent joint 

information into the conventional ANN, the new 

design enhances the system's overall performance. 

From forward kinematics equations the training data 

for ANN were obtained, where the model of the 

manipulator is visualized by MATLAB Simulink to 

evaluate the path errors [8]. S. Aravinddhakshan et 

al [9] experienced two neural networks for a 5DOFs 

industrial manipulator, where the networks differed 

in the input training data, one for only end effector 

position and the other for the complete pose 

information. The results showed the first network 

errors are very minimal compared to other networks.   

Furthermore, an advanced logics is proposed to solve 

the inverse of robot manipulator like adaptive fuzzy 

self-tuning control system [10]. An artificial neural 

fuzzy inference system (ANFIS) was based to 

analyze the kinematics of 4-DOFs SCARA robot in 

order to utilize for desired path generation [11]. 

Also, a multiple ANFIS networks system is built to 

resolve the SCARA inverse kinematics [12]. J. 

Demby’s et al [13] investigate the solving of 

multiple robotic arms using artificial neural network 

and ANFIS where both methods converged 

approximately the same results. 

The previous works showed the feasibility of the 

neural network approach in solving the inverse 

kinematics. But, the most of researchers implement 

the kinematics solutions in simulation programs 

using different structures of network. Based on 

software package’s toolbox or a special program that 

developed by the manufacturer for a specific type of 

robot, the results were compared and discussed. 

Otherwise, in real time implementation there are 

many of troubles may to deal with in order to execute 

any of proposed algorithms. It depends on lab’s 

facilities equipment in hardware like measurements 

sensors or the Professionalism in software 

programming like avoiding the floating of the solver, 

the overlapping of decision loop, signal data surging 

in receiving information, etc. 

The main aim of this work is the experimental 

real time implementation of the onboard neural 

network. Where, an open-source microcontroller 

board (Arduino mega 2650) is utilized to implement 

the robot experimentally based on pre calculated and 

validated parameters of a specific neural network 

simulation. The neural network is trained for the best 

fit of the feedforward data that obtained from the 

forward kinematics of reachable workspace. For that 

purpose, a prototyping model of 4-DOF SCARA 

robot manipulator as shown in figure 1 was built 

using stepper motors as actuators of joints to achieve 

a high accuracy robot manipulator. In addition, a 

micro stepping technique were applied in order to 

smooth the controlled motion.  

 

Fig. 1. SCARA robot model [14] 

  
2. ROBOT KINEMATICS FORMULATION 

  
The homogenous transformation convention of 

DH is based on an analysis of the robot's forward 

kinematics. by attaching a frame coordinate system 

at each joint and specifying the DH main parameters 

[15]: 

− ai-1: represents the distance from zi-1 axis to zi axis 

measured on the xi axis. 

− αi-1: represents the rotation angle from zi-1 axis to 

zi axis measured on the xi axis. 

− di : represents the distance from xi-1 axis to xi axis 

measured on the zi axis. 

− θi : represents the  rotation angle from xi-1 axis to 

xi axis measured on the zi axis. 

The transformation matrix from i frame to 

previous i-1 frame  is: 

     

1 1 1

1 1 11

1 10

0 0 0 1

i i i i i i i

i i i i i i ii

i

i i i

c s c s s a c

s c c c s a s
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− − −

− − −−

− −

− 
 

−
 =
 
 
 

 (1) 

Table 1 lists the robot's DH parameters and joints 

limitations based on the associated coordinate 

frames, as shown in figure 2. 

 

Fig. 2. The assigned robot frame coordinates 
 

Table 1. DH Parameters of the Robot Manipulator 

i ai αi di θi Limits of joints variable 

1 0 0 d1 q1 -150 to 150 (deg) 

2 a2 0 d2 0 0 to 500 (mm) 

3 a3 0 d3 q3 -170 to 170 (deg) 

4 0 0 d4 q4 -120 to 120 (deg) 
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Where a2=252, a3=172, d1=77, d3=-50 and d4=-

120 in millimeters and the negative sign refers for 

opposite direction. 

The different transformation matrices can be 

multiplied sequentially to yield the overall 

transformation matrix of the tool frame relative to 

the origin frame as [16]: 

 
0 0 1 2 3

4 1 2 3 4T T T T T=  (2) 

 

11 12 13

21 22 230

4

31 32 33

0 0 0 1

x

y

z

R R R P
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 =
 
 
 

 (3) 
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d d d d
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 (4) 

From equation 4, the invers kinematics can be 

obtained for the joint’s variables. the prismatic joint 

has a direct solution as: 

 ( )2 1 3 4d d d d= − + +  (5) 

Furthermore, it is noted that the end effector 

rotates simply along the z axis as follows: 

 1 3 4q q q = + +  (6) 

Where it can be found as: 

 21 11tan 2( , )a R R =  (7) 

The problem may be reduced to a two-link 

planner robot by admitting the q2 and projecting the 

robot configuration on the base frame as shown in 

figure 3. The geometrically attainable solution can 

be found as follows [17]: 

 

Fig. 3. Top view of the robot links 

 

From equations 3 and 4, the elements of (1,4) and 

(2,4) can be solved by adding the squared quantities 

which yield to: 

 
2 2 2 2

2 3 2 3 32x yP P a a a a c+ = + −  (8) 

From above: 

 
2 2 2 2

2 3

3

2 32

x yP P a a
c

a a

+ − −
=  (9) 

 
3 31s c=  −  (10) 

 3 3 3
tan 2( , )q a s c=   (11) 

The two solutions of q3 reveal another two solutions 

for q1: 

 1 3 3 2 3 3tan2( , ) tan2( , )y xq a P P a a s a a c=  +  (12) 

 

3. NEURAL NETWORK DESIGN 

  

The closed form inverse of such a robot has a 

multi-jointed set of solution probabilities, as 

evidenced in equations 11, 12 and 6. Thus, a need 

arises to use the training neural network of a 

multilayer to fit the solutions of configurations [18].  

For three input (x,y,ψ) of wrist pose and three 

target (q1,q3,q4) of joint angle the training may be 

extensive calculations with time consuming. It was 

found that the network has poor convergence with 

high errors for the wide range of training data of [-

120 120] deg for q1 and [-150 150] deg for q3. As 

depicted in figures 4 and 5, the training stops at 17 

epochs with unacceptable mean square error of 

1.445. Even the hidden layers, number of neurons 

and training function were changed for best 

regression fitting, which did not go beyond the 63 

percentage. At this point, performance substantially 

declines, leading to an increase in high output errors, 

as seen in figure 6. 

 

Fig. 4. The NN performance for the wide 

workspace training 

 

Fig. 5. Regression plot of NN wide 

workspace training 
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Fig. 6. NN errors for the wide workspace 

training 

 

There are several ways to increase the neural 

network accuracy, such as increasing the epoch or 

the input data and selecting the appropriate 

activation function beside the increasing of neurons 

and hidden layers, but that may conflict with the aim 

of implementing the neural network on a 

microcontroller. The workspace can be resized for 

the effective area and depend on one configuration 

of the left elbow to train a network for the left half of 

the workspace (±x, +y), and another mirrored 

network for the right half (±x,-y). It can also 

decouple the trained data for separate networks for 

each joint variable and combine the solution together 

manually for the final target result. Table 2 

summarized the performance of the individual 

networks. 

 
Table 2. Performance of individual networks 

Neural Network 
NN1 of 

q1 

NN2 of 

q3 

NN3 of 

q4 

Best validation 

performance 
9.521e-5 4.114e-5 5.114e-6 

Instances min. 

errors 
2.23 e-04 2.12 e-4 6.51 e-5 

Instance max. 

errors 
4.85 e-03 1.06 e-3 3.25 e-4 

 

In order to increase the robot precision, the 

inverse kinematics problem may be partitioned by 

considering the vector of {Px,Py,}T as input data and 

the corresponding joints variables of {q1,q3}T as the 

target data. While the end effector orientation and 

height of Pz can be directly inversed to determine q4 

and q2, as previously mentioned in equations 5 and 

6.  With couples of experimental trains in MATLAB, 

a satisfactory network that consistent with paper 

claim is built for a most active reachable workspace 

of range [-80,180] (deg) of q1 and [-179,0] (deg) of 

q3 for left elbow configuration. The reason of select 

these criteria of joints variable is the normalization 

process like to increase the network performance and 

reduce the noise of similar data.   

In concepts, the training process of a robotic arm 

relates the configuration with end effector pose. 

From equation (4) 

  2 1 3 12xP a c a c= +  (13) 

 2 1 3 12yP a s a s= +  (14) 

which can be written as follow in matrix form: 

 
21 12

31 12

x

y

P ac c

P as s

     
=    

      
 (15) 

Since the trigonometric functions values from -1 to 

1 in peaks, then the input values may be mapped to 

1 and be dimensionless to suite the targets values 

which gives more precise regression. The max point 

in work space can be attained with value of extended 

arm which is equal to a2+a3, equation 15 can be 

written as 

 

2

1 12

1 12 3

x

m m

y

mm

P a

a ac c

P s s a

aa

   
   

    =       
     

 (16) 

A four separated networks for the two dimension 

less inputs data network can be trained for each 

output of c1,c12,s1 and s12. The proposed architecture 

for a single network can be seen in figure 7. 

 

Fig. 7. The architecture of two layers with 20 

neurons in each 

 

Table 3 summarized the performance of the 

networks (see figure 8). 

 
Table 3. The proposed configuration networks 

performance 

Neural Network 
NN1 

of c1 

NN2 

of c12 

NN3 

of s1 

NN4 

of s12 

Best validation 

performance 

3.74 

e-7 

1.99 

e-7 

1.40 

e-6 

6.55 

e-7 

Instances min. 

errors 

12.2 

e-5 

7.12 

e-5 

9.53 

e-5 

13.1 

e-5 

Instance max. 

errors 

94.1 

e-5 

73.6 

e-5 

7.27 

e-5 

93.2 

e-5 

All regression 

training 
~1 ~1 ~1 ~1 
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Fig. 8.a. NN of c1 

 

 

Fig. 8.b. NN of c12 

 

 

Fig. 8.c. NN of s1 

 

 

Fig. 8.d. NN of s12 

4. ARDUINO SETUP 

 

The implementation program was developed in 

the Arduino C language using an Integrated 

Development Environment (IDE) for the open 

source microcontrollers. For a certain end effector 

position, the required pulses and direction for each 

joint may be determined. Since the pulses count is an 

integer, the round function may be used for that 

purpose. Also, the sign refers to the direction of 

rotation. There will be a small difference between 

the desired and actual pose in every transition. Its 

value depends on the step size; to reduce the offsets, 

the calculations may be based on the previous 

location anywhere. Then the actual actuator rotation 

angle can be calculated again, where it can be used 

to determine the actual end effector location using 

the forward kinematic equations. 

 1 *
360

i i

i io

q q
j Round steps+ − 
=  

 
 (17) 

 
( ) 1( ) *360oi

i m i m

i

j
q q

steps
−= +  (18) 

For joint 2, the required d2 obtained from equation 5, 

then in the same way: 

 2 1
(( ) * ( / ))

i i
j Round q q step mm

+
= −  (19) 

 2

2( ) 2( 1)
( / )

i i

j
q q

step mm
−= +  (20) 

A typically bipolar NEMA 17 motor with 200 

pulses per revolution was used for all joints with a 

DRV8825 driver. In combination with these drivers, 

the CNC shield of the Arduino was utilized to 

shorten the wire connections. Table 4 shows the total 

pulses per revolution for each actuator. 

 
Table 4. Actuators total pulses 

Joint No. Joint 1 Joint 2 Joint 3 Joint 4 

Microstepping 

set 
1/8 1/2 1/8 1/4 

Pulley ratio / 

Lead screw 
6 

8 mm 

(pitch) 
5 4 

Pulses per 

revelution 
9600 

50 per 

1 mm 
8000 3200 

 

The neurona library [19] is used to process the 

inverse kinematics of the end effector's input data, 

which can run MLP algorithms on AVR boards and 

do inferencing in real time. The required weights of 

the network structure can be extracted either from 

the MATLAB neural network and rearranged to 

meet the command of the neurona library, also it can 

be generated directly by the alternative tool from the 

MLP topology workbench as shown in figure 9.  

Hence, the actuators can be controlled based on 

forward and inverse kinematics analysis with the 

support of accelstepper library [20]. the actuators 

simultaneously were implemented with acceleration 

and deceleration to smooth the motion and reduce 

the vibration of sudden stop which may cause 
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drifting errors.  Figure 10 shows the flowchart of the 

program. 

 

 

Fig. 9. MLP topology workbench training 

tool [19] 

 
Fig. 10. Program flowchart 

 

5. RESULTS AND DISCUSSION 

 

In order to analyze the model efficiency an 

arbitrary circular path in plane within the workspace 

was selected and simulated as shown in 11. In 

details, the circular path error was presented for both 

traditional training and the proposed training in 

figure 12 and 13 respectively. it is observed that the 

maximum error 3 mm in end effector position in 

traditional network while it’s not exceeded 0.15 mm 

in the proposed model.  

 
Fig. 11. Circular path of the end effector in xo-yo plane 

 
Fig. 12. Traditional NN errors of the end effector on 

circular path 

 
Fig. 13. Proposed NN errors of the end 

effector on circular path 

 

Figures 14 and 15 showed the differences 

between the inverse kinematics closed form solution 

and the target data of joints q1 and q3 for both 

networks traditional and proposed training. It’s 

noted that the joints error was reduced by 90 % at 

least from 0.4 to 0.04 deg in maximums. 

 
Fig. 14. Traditional NN joints error for 

circular path 
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A Simulink model is developed to calculate the 

expected experimental errors based on the adopted 

neural network of the dimensionless data, taking into 

account the generated pulses’ differences of 

actuators. The close form solution is included as a 

user-defined function to compare the results and 

scope the overall performance for various points and 

paths. In addition, the forward kinematics block is 

modified to calculate the end effector tool 

orientation error of q4 and the prismatic joint of q2 to 

achieve the final experimental pose vector. Figure 16 

shows the Simulink model. 
 

Fig. 15. Proposed NN joints error for circular path 
 

 

Fig. 16. Simulink model of the proposed neural network 

 

Experimentally, six points were generated with 

different end effector orientation within the 

workspace. Figure 17.a shows the selected points as 

listed in table 5. By the cubic spline interpolation of 

Simulink, the path is drawn as shown in figure 17.b. 

the optimal path planning and trajectory tracking are 

beyond the scope of this paper. Thus, the motion 

between the points is assumed with full stop via the 

breakpoints to experiment the robot feasibility. In 

addition, the fourth point is selected carefully to 

meet a singular configuration of straight arm to 

discover the neural network capability in solving 

similar situation. 

 

Fig. 17.a. The path of the end effector in cartesian 

space 

 

 

 

Table 5. Break points location 

No. Px (mm) Py (mm) Pz (mm) ψ (deg) 

1 273 -215 135 30 

2 400 -50 130 10 

3 301 178 135 5 

4 254 453 110 -5 

5 -60 420 80 -10 

6 79.71 235.24 20 -30 

 
 

 

Fig. 17.b. The projection of the break points at xo-yo 

plane 

Figure 18 depicts the calculated absolute 

differences between the desired joint angle and the 

actual angle of q1, q3 and q4. By applying the forward 

kinematics equations, the position errors can be 

determined as shown in figure 19. 
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Fig. 18. The absolute errors in the revolute joints 

 

It was observed that the maximum error was 

approximately limited to 0.14 mm. since the robot 

pose is a function of joints and links length the errors 

can vary according to point location. The 

experimental errors are expected due to the small 

differences in the stepping rotation of the actuators. 

Also, the Pz has no error to mention because it’s a 

direct function of q2 that has a small difference due 

to the direct implantation of the stepper pulses only. 

 

Fig. 19. The absolute errors of the end effector position. 

 

In contrast to the traditional geometrical solution, 

the neural network achieves an adequate good 

solution for the singular configuration. Figure 20 

depicts the overall end effector error, where it’s 

based on the actual rotation of q1 and q3 as mentioned 

before. 

 

Fig. 20. The absolute errors of the end effector 

orientation 

 

Finally, a comparison was made to similar kinds 

of robots to evaluate the robustness of the proposed 

method as listed in table 6. 

 

6. CONCLUSION 

 

On the basis of the results, it’s concluded that the 

ANN method has a satisfactory and tracking error. 

Input-output information, hidden layers number and 

neurons counts beside the activation functions type 

and the rate value of training are enhanced the neural 

network accuracy. In contrast to simulations, the 

real-time implementation may be constrained by  

factors like network task and processing capability. 

When compared to geometric, analytic, and iterative 

approaches, the on-board ANN program is 

computationally inexpensive and responsive to 

control the real-time implementation. The proposed 

ANN structure is configrations based and the 

dimensioless mapped data has an effecient results by 

reducing the maximum tracking error to 0.15 mm in 

position at maximum. The results showed the 

network capability in solving the inverse kinematics 

across the robot's singular configuration in spite of 

the complex nonlinear behavior of the data set. The 

presented approach achieves a suitable solution for 

similar kinds of robot implementation and can be 

applied for the simple repititive tasks of robot or in 

educational laboratories. 

 
Table 6. Methodology comparison 

Reference Robot type MSE approach (End effector / joint) max error 

Current paper 4 DOF SCARA 1.99 e-7 Multiple NN 0.15 mm / 0.04 deg 

Narayan, J. and Singla, A. [11] 4 DOF SCARA - ANFIS 0.415 mm in y-direction 

Duka et al [6] 3 DOF planner 5.4 e-3 ANN - 

F.A.Raheem et. al. [3] 
3 DOF Reis 

Robot 
- MLP 0.15 deg in joint two 

Source of funding: This research received no external 

funding. 
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