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Abstract
In the present paper, we introduce a subclass X7 (w5 a; h) of mero-
morphically p-valent analytic functions. We obtain main results of this
subclass related with differential subordination. Also we study integral
operator and convolution properties of our class.

Mathematics Subject Classification: 30C45

Keywords: Analytic functions, p-valent meromorphic functions, Differen-
tial subordination, Hadamard product, Mostafa operater

1 Introduction
Let X, be the class of p-valent meromorphic functions of the form,
f(2) =27+ > a2 (peN={1,2,-}), (1)
k=1

which are analytic in the punctured open unit disk U* = {z € C: 0 < |z| < 1}.
For functions f € ¥, given by (1) and g € ¥, defined by

g(z) =27+ 3 b, F P (peN={1,2,--}),
k=1
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we define the convolution (or Hadamard product ) of f and g by
Frg)@) =P+ arpbip . @
k=1

For functions f and g analytic in U = U* U {0}, we say that ¢ is subordinate
to f in U, denote by g < f, if there exists a Schwarz function w(z), which (by
definition) is analytic in U with w(0) = 0 and |w(z)| < 1 (2 € U) such that
g9(z) = f(w(z)) (z € U). Furthermore, if the function g(z) is univalent in U,
then we have the following equivalence relationship holds true (see [2] and [7]),

9(z) < f(2) & ¢(0) = f(0) and g(U) C f(U).

Let A be the class of functions of the form,

2)=z+ Z apz®,
k=2
which are analytic in U. A function h € A is said to be in the class S*(() if,
zh (2)
R U
AT e e

for some § (8 < 1). When 0 < g < 1,5%(0) is the class starlike functions of
order  in U. A function h € A is said to be prestarlike functions of order 3
in U if

2
(1—2)%(1 = p)
where the Symbol % means the familiar Hadamard product (or convolution) of
two analytic functions in U. We denote this class by R(f3) (see [8]). We note
that a function h € A is in the class R(0) if and only if A is convex univalent
in U and R(3) = S*(1).
Aqlan et. al. (see [1]) defined the operator Q5 ,f(2) : 3, — ¥, by:

*h(z) € 57(0) (B<1),

z27P + a+77 Z kf:za ar—pz* P (a>0;m>—-1;peN;feX,)
ol (2) = =

f(2) (a=0np>—-Lipe N;fek,).

(3)

Now, we define the operator Hj, , : X, — %, (see [4 ]) as follows: First;

put
N _ (c + n) = DI(k+n) _
Go(z) =27+ Z zk P (p€N). (4)
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And let G = be defined by

,P1

1

Gf{()*anu():m (u>0;peN). (5)

Then
Bauf (2) = Gop(2) % f(2) (f €%). (6)
Using (4) - (6), we have

— Lk + 1+ )k

HS f( ):Z Fk—i—?] ) Ak—ps (7)

p,n,p Oé+77

=1

where f € 3, is in the form (1) and (v)n denote the Pochhammer symbol given
by

Io+n) _ L (n=10)

R C)

viv+1)---(v+n—-1) (neN)
It is readily verified from (7) that

My, o f (2)) = (@ +n)Hy  f(2) = (a+n+p)H;, (8)
and
2(Hy, 0 (2) = uHy, i f(2) — (0 + p)HE, W f(2). (9)

Definition 1 : A function f € ¥, is said to be in the class Em(,u, A h), if it
satisfies the subordination condition :

(14+ M) 2
pp+1)° p(p+1)(p+2)

In order to get the convolution results of the class of multivalent analytic
functions class 35, (11, A; h), it is necessary to put the following restrictions on
the operator Hpn i

pnu(fl*fQ) ( p'r]/,tfl) f2:f1*( pnp,fQ) (11)
where fi, fo € X5, (11, A; ).

My, W f(2)" < h(z2). (10)

Py

(M f (2))" +

2 Some Lemmas

In order to prove our main results, we need the following lemmas.
Lemma 1 (see [6]) : Let g(z) be analytic in U, and h(z) be analytic and
convex univalent in U with h(0) = ¢(0). If

o(2) = 24/ (2) < h(z), (12)
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where Re{m} > 0 and m # 0, then
9(2) < h(z) = mzm / (U (#)dt < h(2)
0

and h(z) is the best dominant of (12).
Lemma 2 (see [9]) : Let f(z) < F(z) (z € U) and g(z) < G(z) (z € U) if

the function F(z) and G(z) are convex in U. Then
(fxg9)(2) < (F*xG) (z€U). (13)

Lemma 3 (see [8]) : Let (8 < 1), f(2) € S*(B) and g(z) € R(5). For any
analytic function F(z) in U, then
2 U0 c corwy, (14

where ¢o(F(U)) denotes the convex hull of F(U).
3 Main Results

Theorem 3.1 : If the function f(2) belongs to the class 39 (u, A; k), then
P2, ()"

Py,
g(z) = < h(z 15
and if A > 0, then g(z) < h(z), where
(p+2)

h(z) =

. Z—“’f”/ £ () dE < h(z), (2 €U) (16)
0

the function h(z) is convex univalent in U and h(z) is the best dominant of
subordination

g(z) < h(z) (z€U).
Proof :
(i) if A =0, the proof is trivial.
(ii) if A >0, let f(2) € 5, (@, A; h), then

(1 + )‘) p+2 a > " A Zp+3 « Py " >
S04, ) 4 S, L) < B, (D)
Then by (10) and (15), we have
g(z) + A 2g'(z) < h(z) (z€U). (18)

(p+2)
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Using Lemma (1) in (18) with m = @ and A > 0, we get

~ 2 p # P
9(2) < h(z) = (pi >z<i”/ t52 T h(t)dt < h(2),
0

where g(z) is given by (15).
The proof of Theorem 3.1 is complete.

Theorem 3.2 : Let 0 < Ay < Ay Then X5 (11, A h) C X5, (11, Ag; ).
Proof : Suppose that f(2) € X5, (11, A1; k). A simple computation

(1 + )‘2) p+2 «a " )\2
pp+1) (M ()7 pp+1)(p+2)
- [-3] T f ()"
M p(p+1)
A2 [(1 + Al)zp+2
A (p+1)

P, (2)”

A

P N o D0+ )

p*?’(H;Wf(z»'"] (19)

and since h(z) is a convex set. We can write (19) as follows :

A2
p(p+1)(p+2)

R, S+

p(p+1) b P+3(ngf(z))’”}

where g1(z) < h(2),92(2) < h(z), by using definition of convex set and by
Theorem 3.1, since f(2) € X5, (11, A1; h), we get ¢(z) < h(z). Therefore f(z) €
Eg,n (/1“7 >\17 h)

4 Integral Operator

Theorem 4.1 : Let the functions f(z) € ¥, and F(z) defined by

Flz)= 7P / S (dt (Refo} > —p),

ZU

p) T ho+D ety (M@ 20

Then the function F'(z) € X5 (u, 0; h), where

(1+2) T SOF 2

h(z) = @z—“‘?” /0 S @)t < h(2). (21)
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Proof : Let us define
M F ()"

o =T @
then G(z) is analytic in U, G(0) = 1 and
2G'(2) _ Zp+3<Hgnu (2))"
w2 - T e e 29)

Making use of (20), (22), (23) and by

(op —p)f(2) = o(p + 2)F"(2) + 2F"(2).

Then
v\ (M, F(2) 2P, F(2)"
(1+z_?) pp+1)  Tpp+ ) +2)
_ 7\ # (M, (2)"
a (1 " p) p(p+1)
Y {Z””(Hﬁw (2))"  2PP(Hg, F(2)"
(op —p) p(p+1) p(p+1)(p+2)
=G(2) — B 2G' (2
= Gy
= G(2) + 7 2G'(2) < h(2).

(op—p)(p+2)

Then G(z) < h(z), where h(z) is given by (21), and thus F(z) € 0 (1, 0; h).
The proof is complete.

5 Convolution Properties

Theorem 5.1 : If f;(z) € X7, (,u, A; igﬁ) (j = 1,2) and let the oper-

ator H, , satisfy the condition (11). Then each of the following inclusion
relamonshlp holds true:
(1 + /\) " )‘ 3
G(z) = —F——+(H, * z)) + 527 X
( ) p2(p+ 1) ( pn,u( 2)( )) p2 (p

a m m a 1+ Az 1+ Asz
(P = ) € 5 (u,x(HBlz) (1+Bgz>) 21

h(z):z2< Pps (ST é’)(z))eza (M,)H(lJrAlz) (1+A2Z)) (25)

p?(p+1)2 1+ Bz 14 Bsz
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and

e () (E) @

Proof : Since fi(z) € &5 <u, A (}jﬁi;)) and fy(2) € X5, (NM\; (igii))
Then

2N oy 1)+ )

50043, )" <

p(p+1) plp+1)(p+2) 1+ B,z
(27)

and

(1 + >‘) P2 (e )Y 3 (o ) 1+ Az

pp+1)° (Hyinaufa()) +p(p+1)(p+2) (M u2(2))7 < (1+Bg(§2)

and from (27), (28) and Theorem 3.1, we have

) (L)
p(p+1) 1+ Bz

and

zp+2<Hgnuf2<z))” < (1+A23>
p(p+1) 14 Byz )’

by using (11), (27), (28) and Lemma 2, in conjuction with the technique used
before, we have

A+ 2
pp+1)° p(p+1)(p+2)

_—(1+)\)Zp2 o i o (2
Bl p(p+1) : (HW”“ {p2(p+ 1)2 (Hpnu( * [5)(2))

p*(p+1)%(p + 2)2,23(71;‘;777“( v éﬁ)(z))D
A (T+ )

‘%@+n@+m””(zmwﬁ@+w

A 3 @ no g P "
T (p 1 2 (7 2 ))D

< 1+A12 1+A22
1+Blz 1+BQZ '

1 + Alz 1 —+ AQZ
w2 (s
a(2) € an%N(1+Bﬂ>*(1+Bﬂ)>,

(HpmuG(2)" +

Py

Py, G

Py

_|_

2 (Hy (1 £3)(2))

Hence
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1+ Az 1+ Asz
ye : .
hz) € P <u’ A <1 —i—Blz) * (1 +B22>>

The proof of (24) and (25) is complete, we again proceed in a similar manner
and apply Lemma 2, we obtain

and

(1+A) ,io A )
~ 7 HE R " p+ H®  h "
p(p—|—1)z ( Dy (2)) +p(p+1)(p+2)z ( (N (2))
1+A12 1+AQZ
2
= (1—1—312)*(1—1—322)’ ( 9)

where h(z) given by (25) and from (29) and Theorem 3.1 we have the proof of
(26) and the proof is complete.
Theorem 5.2 : Let f(2) € X4, (u, A\; h), w(2) € ¥, and

Re{zPw(z2)} > (ze€U). (30)

N[ —

Then (f *w)(z) € X5, (1, A; h).
Proof : Let f(z) € X5, (11, A; h) be given (1) and w(z) € %, we have

(1 + /\) p+2 o " >‘ p+3 a m
_ (1 + )\) P p+2 « "
o p(p+ 1) [Z ’lU(Z) * (’Z (Hp,n,,uf(z)) )]
A
D P+3 (1 "
p(p+1)(p+2) [0 (7 i ()
— {u(e)}+ H(2),
where
_ 14+ A p+2 a " (/\) p+3 (1 "
H(z) = o 1)2 (Hpm,#f(z)) + T Dt 2)2 (Hpm’#f(z)) . (32)
In view of (30), the function zPw(z) has the Herglotz representation
dp(z)
Pw(z :/ — zeU), 33
@=[ {5 Gev (33)
where p(z) is a probability measure defined on the unit circle || = 1 and

f\:c|:1 dp(xz) = 1. Since h(z) is convex univalent in U, it follows from (31) to

(33) that

(1+)\)Zp2 « * W Z” A Zp3 fe' * W Z/”
STy (xR + s  0)(2)

= H(zz)dp(z) < h(z).

|z|=1
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Then (f xw)(z) € X5, (11, A; h).
Corollary 5.1 : Let f(2) € 7, (11, A; h) be given by (1) and let

=9 1
Re 1+Z zk}>—.
{ k:15—|—k 2

Then 5 B
Frsf)) = 5z | #H@ar 0> )

is also in the class %5 (11, A; h).
Proof : Let f(z) € X5 (i, A; h) be defined in (1). Then,

4] i _ _ e _
Fpﬁ(f)(Z) = ﬁ o tp+6 1f(t)dt =zP + Z M—k&k,pzk p
k=1

where

and belong to X,. We note that

Re{zpF(z)}:Re{l+Z§jkzk} >% (35)
k=1

by (34), (35) and by Theorem 5.2, thus Fps(f)(2) € X5, (11, A; h).

Theorem 5.3 : Let f(z) € X7, (1, A;h) be defined in (1), w(z) € ¥, and
Pw(z) € R(B) (B <1). Then (f *w) € X%, (1, \; h).

Proof : Let f(z) € X7, (1, A\; h) and w(z) € %, from (31), we have

(1+)‘) Zp+2 « xw)(z " )‘
1) el G )
_ (w(2)) * (2H(2))
(zPtlw(z)) * 2
where H(z) is defined as in (32).

Since h(z) is convex univalent in U.

H(z) = h(z), 2" w(z) € R(B), z€ S*(B) (B<1).

Py (% w)(2)”

P11

(z€U), (36)

It follows from (36) and Lemma 3, we get the proof.

(34)
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