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Abstract. In this study, four types of flood routing approaches were studied which give 

significantly varied results represented by the differences between computed and observed flows 

and also differ considerably on the friction coefficient and bed slope of the channels. First two 

approaches use a hydraulic solution to solve the equations of unsteady flow, while the third 

approach uses the hydrological solution, and the fourth algorithm solves Muskingum approach 

with seven parameters. All these approaches were run with the same input parameters, the results 

were compared and tested with four Error Measurement Indices, Sum of Squared Deviations, 

Error of Peak Discharge, Variance Index, and agreement index. Diyala River was selected for 

this application. Dynamic wave method gave accurate results, followed by the characteristic 

method, and then the linear Muskingum-Cunge method, but Symbiotic Organisms Search  

Algorithm  not gave any senses due to change in roughness or bed slope and gave very identical 

values with recorded outflow in all conditions, which means that the hydraulic solution is better 

compared to the hydrological solution. The results also showed that the difference between the 

calculated and observed flows diminished with a decrease in the coefficient of friction and an 

increase in the bed slope channel. 

1. Introduction 

Applications of flood routing are based on the use of the unstable flow theory (long waves or surges) or 

the basic water storage equation. A flood hydrograph is calculated at a given point in a channel based 

on a known hydrograph of a location at the upstream or downstream and using known channel 

characteristics and lateral flow or outflow characteristics,([1], [2], [3] and [4]). The analysis of empirical 

relationships between inflow and outflow is the starting point for flood routing studies. Mathematical 

methods used for more accurate predictions of flood wave motion have been developed. The 

development can be divided into two approaches (hydrological and hydraulic approaches), ([5],[6], [7], 

[8] and [9]).  

Hydrological models have the distinction of being less complex than the hydraulic models, but they 

have some disadvantages as they require configuring observed inflow and outflow hydrographs from a 

reach to determine the routing parameters at a particular flow section, as well as not taking into account 

the effects of the back-water impacts from streams, large tributary flows, dams, and bridges, ([10], [11] 

and [12]). The physical processes of water movement in the natural channels are the basis for hydraulic 

models,([13] and [14]). A one-dimensional theory of flood wave propagation was developed by Saint 

Venant,([15], [16], [17] and [18]). The numerical approach, which does not require any radical 

simplification, is another method for finding solutions to the equations of unsteady flow,    ([19] and 
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[20]). It replaces the derivatives in partial differential equations with finite differences, [21], making the 

equations appear as simple algebraic equations. There were issues with account convergence, stability, 

accuracy, and performance. Despite the fact that the method deals only with simple algebraic equations, 

the number of equations is enormous, much greater than empirical methods,([22] and [23]).To tackle 

optimization issues, the Symbiotic Organisms Search Algorithm (SOS) is presented as an evolution 

optimization model, [24]. This method employs a population-based search that is divided into three 

stages. The SOS algorithm mimics symbiotic relationships between two species, allowing one to choose 

the best partner, [25] . 

The aim of the research is to prepare an evaluation study of hydraulic models (dynamic wave, the 

characteristic approaches), hydrological models (linear Muskingum-Cunge approach), and optimization 

algorithm (SOS) to solve the nonlinear Muskingum approach with seven parameters in flood routing 

and their relationship to the hydraulic properties of the natural channel basin, and the Diyala river is 

chosen for its typical flow properties as a case study. 

2. Mechanism of the Hydraulic and Hydrological Models 

2.1. Dynamic Wave Approach  

The implicit nonlinear approximation of the finite difference used to solve the equations of unsteady 

dynamic flow is referred to as the dynamic wave approach, [21]. This approach has been updated to suit 

the conditions and objectives of this research. To find results, the procedure uses an implicit finite 

difference, as shown in figure1. 

 

 

 

 

 

 

 

                                       𝐾 = 0.5𝛽[𝑘𝑖+1
𝑗+1

+ 𝑘𝑖
𝑗+1

] + 0.5(1 − 𝛽)[𝑘𝑖+1
𝑗

+ 𝑘𝑖
𝑗
]                                       (1) 
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Where β is a weighting factor. 

The continuity equation is classified as a derivative of conservation of mass and momentum, so the 

equations can be written as follows: 

                                                   𝐹(𝑢, 𝑦)
𝜕𝑢

𝜕𝑡
+

𝐴

𝑇

𝜕𝑈

𝜕𝑥
+ 𝑈

𝜕𝑦

𝜕𝑥
= 0                                                        (4) 

                                            𝐺(𝑢, 𝑦)
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑔

𝜕𝑦

𝜕𝑥
+ 𝑔(𝑆𝑓 − 𝑆𝑜) = 0                                        (5) 

The finite-differences formula can be used for equations (4) and (5), where I and j denote distance 

and time phase, respectively. 

 

Figure 1. Finite difference approximation method,[21]. 
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2.2. Characteristics Approach   

According to the characteristics approach, a flood wave is a disturbance of the free water surface, ([22], 

and [26]). Any interruption in the flow of the open channel spreads in two directions, upstream and 

downstream at a certain point. In the x-t plane, a pair of turbulence paths can be plotted to move 

downstream and upstream from point A at time t = 0. The paths are known as the characteristic lines C1 

and C2. The region between a pair of C1 and C2 and point A at time t > 0 represents the turbulence control 

range. Inversely, one can describe turbulence that can affect the condition at point D by looking back in 

time, as shown in figure 2. Solutions of unsteady flow can be found using the concepts of characteristic 

line, control spectrum, and field, [9]. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Influence field and domain, [26]. 

 

The mathematical definition of the total derivative shows the following: 

                                                        𝑑𝑦 =
𝜕𝑦

𝜕𝑥
𝑑𝑥 +

𝜕𝑦

𝜕𝑡
𝑑𝑡   or   

𝑑𝑦

𝑑𝑡

𝑑𝑦

𝑑𝑡
+  

𝜕𝑦

𝜕𝑡 
                                                        (6) 

y is a function of x (distance) and t (time). Equation (6) will show the variation of y. 

                                                                               
𝑑𝑥

𝑑𝑡
= 𝑢 ± 𝑐                                                                               (7) 

                                                                  
𝑑𝑢

𝑑𝑡
 ±

1

𝑐

𝑑𝑦

𝑑𝑡
+ 𝑔(𝑆𝑓 − 𝑠𝑜) = 0                                                                (8) 

In which, 

                                                                               𝐶 = (
𝑔𝐴

𝑇
)0.5                                                                              (9) 

Equations (7, 8 and 9) represent the characteristic forms of the unsteady flow equation. In order to find 

solutions to these equations, the finite difference approximation method is used (either a rectangular 

grid or a distinct grid of C1 and C2). 

2.3. Linear Muskingum-Cunge Approach 

The Muskingum-Cunge approach ([7], [8], [3] and [17]) is based on mass conservation (i.e., the 

continuity equation) and the relationship between inflow, outflow, and storage (i.e., storage equation), 

as follows: 

Continuity procedure: 

                                                                   
𝑑𝑆

𝑑𝑡
= 𝐼 − 𝑂                                                                    (10) 

 

Storage equation : 

                                                            𝑆 = 𝐾{𝐼𝑥 + (1 − 𝑥)𝑂}                                                       (11) 

which : S = absolute storage within the reach, I = inflow, O = outflow, x= weighing factor,  
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K= a value related to the time lag or time of the flood wave's transit across the reach, and the storage 

gradient against the weighted flow curve. 

These equations contribute to determining the discharge of the outflow, as follows: 

                                                  𝑂 = 𝐶1𝑂𝑛
𝑚 + 𝐶2𝑂𝑛

𝑚+1 + 𝐶3𝑂𝑛+1
𝑚                                                  (12) 

                           𝐶1 =
(∆𝑡

𝑘⁄ )+2𝑥

(∆𝑡
𝑘⁄ )+2(1−𝑥)

   , 𝐶2 =
(∆𝑡

𝑘⁄ )−2𝑥

(∆𝑡
𝑘⁄ )+2(1−𝑥)

   ,  𝐶3 =
2(1−𝑥)−(∆𝑡

𝑘⁄ )

(∆𝑡
𝑘⁄ )+2(1−𝑥)

                          (13) 

Using the kinematic wave equation and assuming a single-value phase discharge relationship, 

Cunge,([27] and [12]) developed equation (11), finding that K and x can be calculated using the 

following formulas: 

                                                                      𝐾 =
∆𝑥

𝐶
                                                                       (14) 

                                                             𝑋 = 0.5 {1 −
𝑜𝑤

𝑐𝑠𝑜∆𝑥
}                                                           (15) 

                                                                     𝐶 =
𝑑𝑂

𝑑𝐴
                                                                        (16) 

The main aim of computation in any approach is always to produce an accurate response to match the 

calculated flow result with the observed flow. The method for determining ∆x value influencing 

Muskingum parameter values, is one attempt to achieve an accurate result. As shown in previous studies 

([11], [28] and [29]), that the parameter x varies between 0.0 and 0.5, so the following criteria were 

established to ensure positive outflow for any positive inflow sequences: 

                                             𝑋 ≤
0.5 ∆𝑡 

𝑘
≤ (1 − 𝑥)          for x ≤ 0.5                                               (17) 

So ∆x has to be constrained as follows: 

                                                (𝐶∆𝑡 −
𝑜𝑤

𝑐𝑠0
) ≤ ∆𝑋 ≤ (𝐶∆𝑡 +

𝑜𝑤

𝑐𝑠0
)                                                 (18) 

2.4. Symbiotic Organisms Search (SOS) Algorithm      

It is one of the presumptive algorithms presented on the basis of interactive behavioral simulation. The 

use of the SOS as one of the novel met heuristic approaches for estimating parameters of the nonlinear 

Muskingum model was investigated in this study. To test the proposed algorithm's performance, the 

results of its implementation were compared to those of other approaches such as the Dynamic wave 

approach, the Characteristic methodology, and the Muskingum-Cunge attitude. The SOS (figure 3), like 

other population-based algorithms, produces a population of alternatives periodically in order to identify 

the best answer in the total range of replies. The SOS algorithm starts with a population known as the 

ecosystem, [30]. A set of decision variables is randomly created in the search space in the first 

ecosystem. The degree of compliance with the aim is determined by each living creature as a candidate 

for the solution associated with a specific fit (the value of the objective function). In each iteration, all 

met heuristic algorithms use an alternate function to solve a problem and generate a new solution for the 

next iteration. 

The algorithm's overall trend is as follows : 

Initialization           Repetition          Mutualism          Commensalism Parasitism           End procedure 

after the maximum number of iterations has been reached . 
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Figure 3. The SOS methodology flow chart, [24]. 

2.4.1. Model Formulation and Optimization 

The Non-linear model of type 5 (NL5) ([31] and [32])  is an enhanced variant of this model. The steps 

to obtain the NL5 model are outlined below: 

                                                                             𝑆1 = 𝑏 {
𝐼

𝑑1
}

𝑚
𝑛1⁄

                                                                     (19) 

                                                                             𝑆𝑜 = 𝑏 {
𝐼

𝑑2
}

𝑚
𝑛2⁄

                                                                     (20) 

Where d1 and n1 represent the river's upstream depth–flow relationship, and d2 and n2 represent the river's 

downstream depth–flow parameters, substituted SI and So from equations (14) and (15) in {S = [X SI + 

(1-X) So)]α }  

Simplifying the equation (16) produced, 

                                                  𝑆 = 𝑘[𝑋(𝐶1𝐼𝛽1) + (1 − 𝑋)(𝐶2𝑂𝛽2)]
∝

(𝑁𝐿5)                                            (21) 

Where: 

                                                                                   𝐾 = 𝑏∝                                                                              (22) 

                                                                 𝛽1 = 𝑚
𝑛1⁄                                                                             (23) 

                                                                   𝛽2 = 𝑚
𝑛2⁄                                                                            (24) 

                                                                            𝐶1 = (1
𝑑1

⁄ )
𝛽1

                                                                       (25) 

                                                                            𝐶2 = (1
𝑑2

⁄ )
𝛽2

                                                                       (26) 

Where: 

I, O: inflow and outflow rate (m3/s) 

Start 

Generate primary 
samples 

Initialization 

Evaluation 

Termination 
satisfied 

commensalism
Mm 

parasitism T=T+1 

END 

voluntarism 
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K: constant which is larger than (0) 

X: The dimensionless weight coefficient for the river is between 0 and 0.5, showing the relative 

impacts of the input and outflow flow.  

β1, β2 and α: are the zero-valued exponential parameters. Fixed parameters C1 and C2 are both zero. 

The Non-Linear model of type 5 contains seven parameters: X, K, β1, β2, α, C1, C2. One of the other 

non-linear models is more difficult in this regard. Optimization models are used to optimize these 

parameters. 

2.4.2. Simulation Technique for the Proposed NL5 Model 

This study employs, [33], to simulate flood routing technique using the NL5 model. The observed 

inflow, calculated outflow, and computed storage during the ith time period in the NL5 model are 𝐼𝑖, 

𝑄𝑖
∗and Si respectively, where (i = 0, 1, 2..., N) represents the simulation time periods. The following are 

the steps of the proposed NL5 flood simulation model: 

1. Assume the seven hydrologic parameters values (X, K, β1,β2, α, C1, C2): 

                                    𝑆𝑜 = 𝑘[𝑋(𝐶1𝐼𝛽1) + (1 − 𝑋)(𝐶2𝑂𝛽2)]
∝

               i=0                                  (27) 

2.  Calculate the starting storage SO by setting the initial computed outflow to the same value as the 

initial observed inflow  (𝑄𝑜
∗ = 𝐼𝑜): 

                                   
Δ𝑆𝑖

Δ𝑡
= 𝐼𝑖 {[

1

𝐶2(1−𝑋)
] (

𝑆𝑖

𝐾
)

1

𝛼
− [

1

𝐶2(1−𝑋)
] [𝛼(𝐶1𝐼𝛽1)]}

1
𝛽2

⁄

                                 (28) 

3. Calculate the storage volume's time rate of change during time period i (beginning with i = 1): 

                                                               𝑆𝐼+1 = 𝑆𝐼 + ∆𝑡(
∆𝑆𝑖

∆𝑡
)                                                           (29) 

4. Calculate the storage at time i 

5. Calculate the outflow for period i.: 

                               
Δ𝑆𝑖

Δ𝑡
= {[

1

𝐶2(1−𝑋)
] (

𝑆𝑖

𝐾
)

1

𝛼
− [

1

𝐶2(1−𝑋)
] [𝛼(𝐶1𝐼𝑖 − 1𝛽1)]}

1
𝛽2⁄

                                 30) 

6. Repeat steps (3)–(5) until the simulation reaches time N. Increment the index I by one ([34];[35]). 

2.5.  Error measurement Indices 

2.5.1. Sum of Squared Deviations (SSD)    

In this study, the SSD index is utilized as the objective function. The total squared discrepancies between 

observed and actual discharges are calculated using the following index, [36] .   

                                                         𝑀𝑖𝑛 (𝑆𝑆𝑄) = ∑ (𝑄𝑡 − 𝑄𝑐𝑡)𝑁
𝑡=1

2                                   (31) 

2.5.2. EP index (Error of peak discharge) 

EP index is a metric that quantifies the difference between anticipated and observed discharges, [37]. 

                                                             𝐸𝑄𝑝 = [|𝑄𝑜
𝑃 − 𝑄𝑟𝑜

𝑃 |]/𝑄𝑜
𝑃                                                        (32) 

Where: 

𝑄𝑜
𝑃: observed outflow peaks(m3/s) 

𝑄𝑟𝑜
𝑃 : routed outflow peak (m3/s)  

2.5.3. Varex Q (Variance Index) 

This metric displays how close predicted and observed hydrographs are to one other. 

                                                 𝑉𝑎𝑟𝑒𝑥𝑄 = [1 −
∑(𝑄𝑜−𝑄𝑟𝑜)

∑(𝑄𝑜−𝑄𝑜𝑚𝑒𝑎𝑛)
] × 100                                               (33) 

Where (𝑄𝑜𝑚𝑒𝑎𝑛) is the observed mean discharge, the closer the coefficient is to one, the more 

accurate the prediction of the flood. 
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2.5.4. Agreement Index (d)   

Based on the following equation, the model's performance is well demonstrated, since the value of the 

index may fluctuate from 0 to 1, [38]. 

                                                     𝑑 = 1 −
∑(𝑄𝑜−𝑄𝑟𝑜)^2

∑(|𝑄𝑟𝑜−𝑄𝑎𝑣.𝑜𝑏|−|𝑄𝑜𝑏−𝑄𝑎𝑣.𝑜𝑏|)
                                                (34) 

where:  

𝑄𝑜, 𝑄𝑟𝑜: observed outflow (m3/s) and routed outflow(m3/s) respectively 

𝑄𝑎𝑣.𝑜𝑏: average observed outflow(m3/s) 

3. Study Area                               

The Diyala River is one of the important water sources in Iraq, and it is characterized by its typical flow 

characteristics. The southern part of it was chosen for a case study. The aforementioned river is classified 

as one of the tributaries that flow into the Tigris River, and its estuary point in the Tigris River, located 

south of Baghdad (the capital of Iraq). The catchment area of the Diyala River is divided into two parts, 

one in Iran (the neighboring country) and the other in Iraq. The area of Diyala Rive is 33,240 square 

kilometers with a total length of 574 kilometers, 25% of this area is located in Iran and the majority is 

in Iraq, figure 4, [39].  

 

 

 

 

 

 

 

 

 

Figure 4. Layout of Diyala River, [39]. 

The comparison test of the three routes was applied to the flows of the Diyala River, with simulated and 

observed flows. The computed outflows were compared with each other and the target discharge for 

each group of bed slope and the Manning's coefficient (n) values. To achieve this, the data of observed 

flows from the Diyala River for the period from 1993 to 2017 were used, where the general monthly 

average of these discharges was adopted as shown in table 1, [40], in addition to the slope of the river 

bed (So) and the Manning's coefficient (roughness) for three locations in the southern part of Diyala 

River, illustrated in table 2, [41]. The monthly averages of the observed water discharges for the selected 

period were marked by their regularity, accuracy, and ideality compared to the readings of other time 

periods. 
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Table 2. Hydraulic properties for several locations in Diyala River, [41]. 

Location Location's name Length of river in 

the location(km) 

Manning 

coefficient (n) 

Bed slope 

(So, cm/km) 

A 
North of Baquba 

city 
43 0.027 43 

B 
Center of Baquba 

city 
85 0.089 17 

C 
South of Baquba 

city 
75 0.038 26 

4. Results analysis and discussion           

One of the most fascinating and difficult unsteady flow phenomena is flood routing, which involves 

tracking the complex motion of a flood wave flowing through the channel. It is difficult to estimate the 

nonlinear Muskingum model parameters via trial and error. Various approaches have been used to 

estimate these parameters during the last two decades. One of the strategies that have been successful in 

estimating these parameters is met heuristic techniques. In this study, the nonlinear Muskingum model's 

parameters were estimated using a search method for symbiotic organisms. To assess the performance 

of the symbiotic creature search algorithm, the results of its implementation were compared to those of 

other hydraulics and hydrologic approaches such as a (Dynamic Wave and Characteristics approaches) 

and hydrological ( Linear Muskingum- Cunge approach) models. In order to find the best values of the 

outflow for the Diyala river, the most accurate and identical of the computed flow with the observed 

flow were shown. Figures 5,6 and 7 illustrate the ranges of congruence for the hydrographic plans 

resulting from the computed and observed flows. The statistical indices SSQ, EQP, varex Q, and d were 

used to assess the algorithms. This shows that the search method for symbiotic organisms is working 

properly in calculating the values of the nonlinear Muskingum model to find the optimal values of the 

outflow and more compatible with the calculated outflow with all other methods without any senses to 

change n and So. 

The hydrograph computed using the dynamic wave approach gave a great match to the observed outflow 

values, and this method achieved the required compatibility at the computed peak flow time with the 

observed flow. Whereas in other approaches applications, it achieved peak flows earlier than the 

observed outflow time. As a result of the dynamic wave approach achieving the required 

synchronization condition, the differences between the computed and observed flow were much smaller 

than what happened in the other approaches. 

The results show that the use of hydraulic models to achieve the correspondence between the computed 

and observed flows as well as the required synchronization at the peak flow is better compared to the 

hydrological model represented by the linear Muskingum-Cunge approach, as it was difficult to meet 

the requirements of equations (12) to (17) for a steep bed slope, table 3. The interval remains short 

enough that ∆x can satisfy the condition and ensure positive outflows. So due to the previously 

mentioned requirements, the Muskingum-Cunge approach failed to obtain an adequate result when 

applied to a channel with bed slope (So) = 0.0050 and Manning's coefficient (n) =0.035. 

Table 1. General monthly average of  discharge for Diyala River for the 

years (1993-2017),([39] and[40]). 
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It is also noted that this study confirmed what was stated in previous studies ([6], [7], [8], [16], [3] and 

[18]) that hydrological models are less complex than hydraulic models, but they also have some defects. 

Since they require observed inflow and outflow hydrographs from a reach to determine the routing 
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Figure 6. Comparison results to recorded outflow hydrograph with various methods to 

location (B) 
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coefficients, they are generally limited in application, backwater effects of tides, major tributary inflow, 

dams, and bridges are not taken into account.  

 

 
 

 

 

After determining the dynamic wave approach as the best method in flood routing, the effect of both 

Manning's coefficient (roughness coefficient) and bed slope on this method was studied using different 

values. The results showed that the difference between the computed and observed flows diminished 

with a decrease in the coefficient of friction and an increase in the bed slope channel. 

5. Conclusion       

In this study,  the performance of the symbiotic creature search algorithm was used to assess the results 

of its implementation compared to those of other hydraulics and hydrologic approaches such as a 

(Dynamic Wave and Characteristics approaches) and hydrological (Linear Muskingum-Cunge 

approach) models in flood routing and their relationship to the hydraulic properties of the natural channel 

bed. 

The results of the comparison indicated that the use of hydraulic models to achieve compatibility 

between the calculated and observed flows, as well as the required synchronization at the peak flow, is 

better than the application of hydrological models. The study showed that the dynamic wave approach 

achieved a significant match between the calculated flow and the observed outflow values and gave an 

accurate synchronization of the time of the peak flow with the observed outflow. Also, it is noted that 

the symbiotic organisms search (SOS) Algorithm did not give any sense due to changes in roughness or 

bed slope and gave very identical values with recorded outflow in all conditions, which means that the 

hydraulic solution is better compared to the hydrological solution. The use of the dynamic wave 

approach showed that the difference between the calculated and observed flows decreases as the 

Manning coefficient decreases and the channel bottom slope increases. 
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Table 3. The estimated outflow  values for all methods used. 
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