A LOW COST IMPLEMENTATION OF ADVANCED ENCRYPTION STANDARD ALGORITHM USING 8085A MICROPROCESSOR

Salim M. Wadi^{1*}, Nasharuddin Zainal^{1†},

¹Department of Electrical, Electronic and System Engineering, UKM University, Malaysia

ABSTRACT

The high security communication systems became an urgent need in recent years for both governments and peoples desiring protection from signal interception. The implementation of advanced encryption standard algorithm is important requirement where many researches proposed different items to this purpose. Some papers used microcontrollers as CPU item to implement AES algorithm. A simply item proposed in this paper to speedy, low cost implementation of Rijndael Advanced Encryption Standard (AES) cryptographic algorithm which is 8085A microprocessor. The results prove the implementation is effective through competitive cost, low hardware requirements, and reasonable speeds compared with other implementation methods.

Keywords: AES, 8085 processor, ALP, microcontroller, Rijndael.

1. INTRODUCTION

Transmission of important electronic financial transactions and digital touch applications must be fast and very secure to achieve the requirements for security, integrity, and non reproduction of exchanged information. Cryptography provides a method for securing and authenticating the transmission of information over insecure channels. For these reasons, large number of research were done to developing a high performance encryption system (Daemen and Rijmen 2002; Tran et al 2008).

Vincent Rijmen and Joan Daeman were innovated new encryption system which referred to as advanced encryption standard (AES) in 2001(Daemen and Rijmen 2002). The Advanced Encryption Standard (AES) was successor alternative algorithm to the Data Encryption Standard (DES) which suffers from theoretical weaknesses in the encryption as well as successful brute force attacks carried out against the algorithm(Orlando et al 2008). The implementations of AES are carryout into two ways, one by FPGA and other by microcontroller.

^{*} Presenter: Email: salimmw@eng.ukm.my

[†] Presenter: Email: nzainal@hotmail.com

Orlando, J.et al. (Orlando et al 2008) used a bit-serial approach to built their architecture utilizing FPGA with focusing on low cost resulted in a design well-suited for SoC implementations. Proposed implementation give good results in term throughput/slice ratio and cost can be reduced while maintaining a suitable operating speed with minimization of redundancies.

Hyubgun Lee et al. (Hyubgun et al 2009) were presented the sensor network with high security to analyze the communication efficiency through performance evalution of AES ciphering system depending on data length, and cost of operation per hop according to the network scale. The authors concludes that if the scale of the sensor network increased, this lead to doubled the delay as well as increasing in the energy disbursed.

Kai Schramm et al. (Kai and Christ 2004) were design an particularistic lab project in IT security which combines topics of computer architecture, cryptography and software engineering. The professed that undergraduate Students of EE/CS are used the proposed lab to worthily carryout the Advanced Encryption Standard (AES) on a smart card using Atmel ATMega163 Reduced Instruction Set Computer (RISC) microcontroller in assembly.

Gielata et al. (Gielata et al 2008) were proposed special architecture using FPGA to get speedy and flexibility implementation to 128-ASE algorithm. The hardware performance was been evaluated depending on four parameters as, number of used resources, maximum clock frequency, latency measured in number of clocks, throughput measured in bytes per second.

In this paper simply item proposed to low cost implementation of AES algorithm using 8085 microprocessor as processing tool with very effective manner and reasonable speed.

the paper is organized as, in section2 clarify short for AES algorithm. Explain to implementation method show in section3. Results and comparison in section 4 and conclusion in section 5.

2- AES ALGORITHM

AES is based on Rijndael algorithm which is a symmetric block cipher that processes fixed data of 128-bit blocks. It supports key sizes of 128, 192 and 256 bits and consists of 10, 12 or 14 iteration rounds, respectively. In this paper, we will present the 128-bit version of AES with 10 rounds. Each round mixes the data with a round key, which is generated from the encryption key. The AES encryption structure is shown in figure 1 (Orlando et al 2008; Schmidt et al 2009). The cipher maintains an internal, 4×4 matrix of bytes referred to as State, on which the operations are performed. Initially, State is filled with the input data block and XOR-ed with the encryption key. The last round bypasses MixColumns transformation. SubBytes transformation uses 16 identical 256-byte substitution table called S-box as shown in table1(Majithia and Dinesh 2010).

SubBytes can be implemented either by computing the substitution or using look-up-table (LUT). ShiftRows is a cyclic left shift of the second, third and fourth row of State by one, two, and three bytes, respectively. MixColumns performs a modular polynomial multiplication on each column.

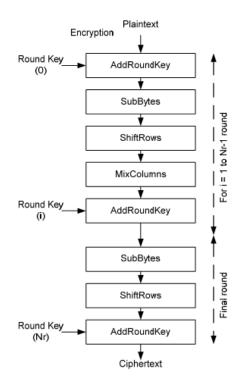


Figure 1: AES Encryption Structure.

During each round, AddRoundKey performs XOR with State and the round key. Round key generation (key expansion) includes S-box substitutions, word rotations, and XOR operations performed on the encryption key. Depending on the security level required for the application, AES uses different key length (Muhammad and Syed 2009; Ming et al 2007).

	0	1	2	3	4	5	6	7	8	9	a	b	c	d	e	f
0	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
1	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
2	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	15
3	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
4	09	83	2c	1a	1b	6e	5a	a 0	52	3b	d6	b3	29	e3	2f	84
5	53	d1	00	ed	20	fc	b 1	5b	6a	cb	be	39	4a	4c	58	cf
6	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9f	a8
7	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
8	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
9	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
с	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
d	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
e	e1	f8	98	11	69	d9	8e	94	9b	le	87	e9	ce	55	28	df
f	8c	al	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

Table 1: S-Box based on Galois Field GF (2⁸)

3- PROPOSED IMPEMENTATION:

The best encryption algorithm that is easy to implement in software and in hardware (Orlando et al 2008). Inventors of AES algorithm designed it with an idea in mind of ability for its efficient execution using different platform such as CPU, ASICs, and FPGA. Microprocessor is cheap and easy programmed and has high efficiency. For these reasons, we choose the microprocessor to implement the AES algorithm. A 8085 microprocessor is used to implement AES algorithm in this paper because it compatible with proposed requirements (low cost, good speed, and efficiency). In this implementation, SubBytes transform implemented using lookup table (LUT). MixColumns transform implemented using XOR operations with mod to (11B) because the state in hexadecimal numbers. ShiftRows and AddRoundKey transforms are easily executed using 8085 microprocessor.

A block diagram to proposed implementation shown in figure 2, which consist from:

- 8085A microprocessor: this processor is from Intel family, 8 bit processor, operating frequency is 5MHz.
- EEPROM: about 0.978 Kbyte used to save the operating programs and S Box and inverse S Box.
- RAM: about 0.76Kbyte
- Keyboard and 7-sigment display to input the plaintext and key block as inputs and display the cipher text as outputs.
- I/O ports.

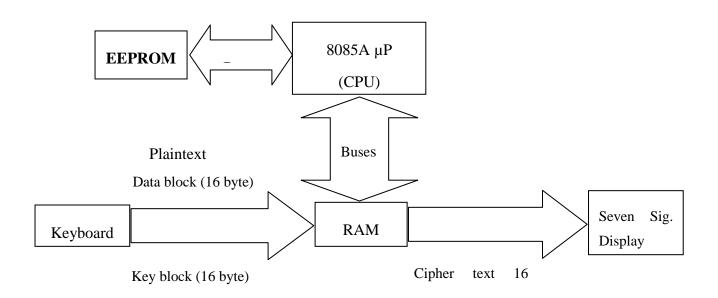


Figure 2: Block diagram of device.

4- RESULT:

Performance of the proposed implementation was evaluated according to the below parameters: **Simplicity:** the proposed implementation is very simple as hardware see fig.2 as well as the programming requirements is very easy where assembly language used to write the essential programs to employment the microprocessor.

Cost: As known to all, the price of 8085 microprocessor IC is very low about 1-1.5 \$ which is the mean part of the proposed circuit and this is true for other parts, therefore we think that the cost of the complete circuit is very low compared with other implementation using FPGA or microcontrollers.

Speedy: Table 2 shown the implementation results to the circuit. From this table we see that the speed of complete implementation is reasonable and compatible most applications as example to researches purpose.

Implementation of AES	Suggested implement.
Type of processor	8085Α μΡ
Frequency	5 MHz
Time of encryption	17.66ms
No. of CPU Cycle (for one block data)	4500
EEPROM needed	0.978 Kbyte (contain the program memory)
Volatile memory	0.76Kbyte
Internal registers	7(8-bit),1 (16-bit)

Table 2: The implementation results

To demonstrate the effectiveness of proposed method, we compare the proposed implementation with other two implementations, which used the microcontroller. We don't find implementation using any type of microprocessor especially 8085 microprocessor. Table 3 shown the comparison.

From table 3, we see that the consumption time in proposed method near of the proposed method in (Kai and Christ 2004) but the memory required is little in proposed method and is cheaper. In compare with implementation that proposed in (Hyubgun et al 2009) the difference in terms of time carryout and memory required is very high. Therefore, we conclude that the proposed method is effective in terms of cost, time consumption, simplicity, and required peripherals such as memory.

Implementation of AES	Suggested implement.	Prop. imp. in [4]	Prop. imp. in [5]	
Type of processor	8085Α μΡ	ATmega644p μC	ATMega163 μC	
Frequency	5 MHz	12 MHz	3.57 MHz	
Time of encryption	17.66ms	449 ms	22.50 ms	
EEPROM needed	0.978 Kbyte (contain the program memory)	8 Kbyte	32 byte	
Volatile memory	0.76Kbyte	Not found	2.234 Kbyte	
Internal registers	7(8-bit),1 (16-bit)	Not found	32 (8-bit)	

Table 3:Comparison	of Suggested]	[mplementation]	Results with	Proposed Im	plementation in	4.51
i usie et comparison	or buggebteur	mpromonout		I I Opobeta Imi		

5-CONCLUSION:

In this paper we proposed the novel implementation to AES algorithm using 8085 microprocessor. The 8085 microprocessor is low cost and effectiveness with reasonable speed, the performance of proposed implementation is evaluated in terms of cost and time required to carry out the AES algorithm. As a result the time and cost of the proposed implementation is good in compare with other implementation.

6-ACKNOWLEDGEMENT

The authors would like to thank staff of Department of Electrical, Electronic and Systems Engineering in Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia for assist in the completion of this work and also UKM for UKM-GUP-2011-060 fund.

References:

- Daemen J and Rijmen V (2002). The design of AES-The Advance Encryption Standard, Springer-Verlag.
- Tran M. T., Bui DK and Duong AD (2008) Gray S-Box for Advanced Encryption Standard. In Proceeding of International Conference on Computational Intelligence and Security, Vol. 1, pp. 253-258.
- Orlando J., Hernandez T., Sodon MA and Numan K (2008). A Low Cost Advanced Encryption Standard (AES) Co-Processor Implementation. JCS&T, Vol.8 No.1 pp 8-14.
- Hyubgun L., Kyounghwa L., and Young-Tae S (2009). AES Implementation and Performance Evaluation on 8-bit Microcontrollers. International Journal of Computer Science and Information Security, Vol. 6, No. 1.

- Kai S and Christ P (2004) IT Security Project: Implementation of the Advanced Encryption Standard (AES) on a Smart Card. in Proceedings of the International Conference on Information Technology: Coding and Computing IEEE.
- Gielata A., Russek P., and Wiatr K. (2008). AES hardware implementation in FPGA for algorithm acceleration purpose. in Proceeding of International Conference on Signals and Electronic Systems, pp. 137-140.
- Schmidt JM, Hutter M, and Plos T (2009) Optical Fault Attacks on AES: A Threat in Violet. in Workshop on Fault Diagnosis and Tolerance in Cryptography, pp. 13-22.
- Majithia S and Dinesh K (2010). Implementation and Analysis of AES, DES and Triple DES on GSM Network. IJCSNS, VOL.10 No.1, pp 298-300.
- Muhammad HR, and Syed MQ (2009) A Novel FPGA Implementation of AES-128 using Reduced Residue of Prime Numbers based S-Box. IJCSNS, VOL.9 No.9, pp.305 -309.
- Ming-Haw J, Chen JH, and Chen ZH (2007) Diversified Mixcolumn Transformation of AES. IEEE.

Appendix A Example of AES Encryption

Table1: key expansion example

Key words	Auxiliary function
W0=0f 15 71 c9	Rot word (W3)= 7f 67 98 af =x1
W1=47 d9 e8 59	Sub word (x1) =d2 85 46 79 =y1
W2=0c b7 ad d6	R con (1) = 01 00 00 00
W3=af 7f 67 98	Y1 \bigoplus Rcon(1) = d3 85 46 79 = z1
W4 = W0 \oplus Z1 = dc 90 37 b0	Rot word (W7)= 81 15 a7 $38 = x2$
W5= W4 \oplus W1= 9b 49 df e9	Sub word (x2) = 0c 59 5c 07 = y2
W6= W5 \oplus W2= 97 fe 72 3f	R con (2) = 02 00 00 00
W7= W6 \oplus W3= 38 81 15 a7	Y2 \bigoplus Rcon(2) = d3 85 46 79 = z2
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Rot word (W11)= ff d3 c6 e6 =x3 Sub word (x3) = 16 66 b4 8e =y3 R con (3) = 04 00 00 00 Y3 \bigoplus Rcon(3) = 12 66 b4 8e = z3
W12= W8 \oplus Z3 = c0 af df 39	Rot word (W15)= ae 7e c0 b1 = x4
W13= W12 \oplus W9 = 89 2f 6b 67	Sub word (x4) = e4 f3 ba c8 = y4
W14= W13 \oplus W10= 57 51 ad 06	R con (4) = 08 00 00 00
W15= W14 \oplus W11= b1 ae 7e c0	Y4 \bigoplus Rcon(4) = ec f3 ba c8 = z4
$ \begin{array}{rll} W16=w12 \oplus Z4 & = 2c \ 5c \ 65 \ f1 \\ W17= \ w16 \oplus W13 & = a5 \ 73 \ 0e \ 96 \\ W18= \ w17 \oplus W14 & = f2 \ 22 \ a3 \ 90 \\ W19= \ w18 \oplus W15 & = 43 \ 8c \ dd \ 50 \end{array} $	Rot word (W19)= 8c dd 50 $43 = x5$ Sub word (x5) = 64 c1 53 1a = y5 R con (5) = 10 00 00 00 Y5 \bigoplus Rcon(5) = 74 c1 53 1a = z5
$W20=W16 \oplus Z5 = 58 9d 36 eb$	Rot word (W23)= 40 46 bd $4c = x6$
W21= W20 \oplus W17 = fd ee 38 7d	Sub word (x6) = 09 5a 7a 29 = y6
W22= W21 \oplus W18 = 0f cc 9b ed	R con (6) = 20 00 00 00
W23= W22 \oplus W19 = 4c 40 46 bd	Y6 \bigoplus Rcon(6) = 29 5a 7a 29 = z6
$W24=W20 \oplus Z6 = 71 c7 4c c2$	Rot word (W27) = a5 a9 ef cf = x7
W25= W24 \oplus W21 = 8c 29 74 bf	Sub word (x7) = 06 d3 df 8a = y7
W26= W25 \oplus W22 = 83 e5 ef 52	R con (7) = 40 00 00 00
W27= W26 \oplus W23 = cf a5 a9 ef	Y7 \bigoplus Rcon(7) = 46 d3 df 8a = z7
W28= W24 \oplus Z7 = 37 14 93 48	Rot word (W31) = 7d a1 4a f7 = x8
W29= W28 \oplus W25 = bb 3d e7 f7	Sub word (x8) = ff 32 d6 68 = y8
W30= W29 \oplus W26 = 38 d8 08 a5	R con (8) = 80 00 00 00
W31= W30 \oplus W27 = f7 7d a1 4a	Y8 \bigoplus Rcon(8) = 7f 32 d6 68 = z8
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Rot word (W35) = be 0b 38 3c = x9 Sub word (x9) = ae 2b 07 eb = y9 R con (9) = 1b 00 00 00 Y9 \oplus Rcon(9) = b5 2b 07 eb = z9
$W36= W32 \stackrel{\oplus}{=} Z9 = fd \ 0d \ 42 \ cb$	Rot word (W39) = 6b 41 56 f9 = x10
$W37= W36 \stackrel{\oplus}{=} W33 = 0e \ 16 \ e0 \ 1c$	Sub word (x10) = 7f 83 b1 99 = y10
$W38= W37 \stackrel{\oplus}{=} W34 = c5 \ d5 \ 4a \ 6e$	R con (10) = 36 00 00 00
$W39= W38 \stackrel{\oplus}{=} W35 = f9 \ 6b \ 41 \ 56$	Y10 \bigoplus Rcon(10) = 7f 83 b1 99 = z10

ſ

W40= W36 ⊕ Z10 = b4 8e f3 52
W41= W40 ⊕ W37 = ba 98 13 4e
W42= W41 W38 = 7f 4d 59 20
W43= W42 ⊕ W39 = 86 26 18 76

Table 2: AES encryption example

Start of round	After sub Byte	After Shift Ro. After Mix col.	Round Key
01 89 fe 76 23 ab dc 54 45 cd ba 32 67 ef 98 10			0f 47 0c af 15 d9 b7 7f 71 e8 ad 67 c9 59 d6 98
0e ce f2 d9 36 72 6b 2b 34 25 17 55 ae b6 4c 88	ab 8b 89 35 05 40 7f f1 18 3f f0 fc e4 4e 2f c4	ab 8b 89 35 b9 94 57 75 40 7f f1 05 c4 8e 16 51 f0 fc 18 3f 47 20 9a 3f c4 e4 4e 2f c5 d6 f5 3b	dc9b97389049fe8137df7215b0e93fa7
65 0f c0 4d 74 c7 e8 d0 70 ff e8 2a 75 3f ca 9c	4d 76 ba e3 92 c6 9b 70 51 16 9b e5 9d 75 74 de	4d 76 ba e3 8e 22 db 12 c6 9b 70 92 b2 f2 dc 92 9b e5 51 16 df 80 f7 c1 de 9d 75 74 2d c5 1e 52	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
5c 6b 05 f4 7b 72 a2 6d b4 34 31 12 9a 9b 7f 94	4a 7f 6b bf 21 40 3a 3c 8d 81 c7 c9 b8 14 d2 22	4a 7f 6b bf b1 c1 0b 40 3a 3c 21 cc ba f3 8b c7 c9 8d 81 07 f9 1f 6a 22 b8 14 d2 c3 1d 19 24 5c 5c 5c 5c 5c 5c 5c 5c	c0 89 57 b1 af 2f 51 ae df 6b ad 7e 39 67 06 c0
71485c7d15dcdaa92674c7bd247e229c	a3 52 4a ff 59 86 57 d3 f7 92 c6 7a 36 f3 93 de	a3 52 4a ff d4 11 fe 0f 86 57 d3 59 3b 44 06 73 c6 7a f7 92 cb ab 62 37 de 36 f3 93 19 b7 07 ec	2ca5f2435c73228c650ea3ddf1969050
f8b40c4c673724ffaea5c1eae82197bc	41 8d fe 29 85 9a 36 16 e4 06 78 87 9b fd 88 65	418dfe292a47c4489a36168583e818ba7887e40684182723659bfd88eb100af3	58 fd 0f 4c 9d ee cc 40 36 38 9b 46 eb 7d ed bd
72 ba cb 04 1e 06 d4 fa b2 20 bc 65 00 6d e7 4e	40 f4 1f f2 72 6f 48 2d 37 b7 65 4d 63 3c 94 2f	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71 8c 83 cf c7 29 e5 a5 4c 74 ef a9 c2 bf 52 ef
0a 89 c1 83 d9 f9 c5 e5 d8 f7 f7 fb 56 7b 11 14	67a778973599a6d96168680fb12182fa	67 a7 78 97 ec 1e c0 80 99 a6 d9 35 0c 50 53 c7 68 0f 61 68 3b d7 00 ef fa b1 21 82 b7 22 72 e0	37bb38f7143dd87d93e708a148f7a54a
db a1 f8 77 18 6d 8b ba a8 30 08 4e	b93241f5ad3c3df4c204302f	b9 32 41 f5 b1 1a 44 17 3c 3d f4 ad 3d 2f ec b6 30 2f c2 04 0a 6b 2f 42	48 f3 cb 3c 26 1b c3 be 45 a2 aa 0b

| International Technical Conference 2012 |

S. M. WADI N. ZAINAL

ff d5 d7 aa	16 03 0e ac	ac 16 03 0e 9f 68 f3 b1	20 d7 72 38
f9e98f2b1b342f084fc98549bfbf8189	991e73f1af18153084dd973b08080ca7	99 1e 73 f1 31 30 3a c2 18 15 30 af ac 71 8c c4 97 3b 84 dd 46 65 48 eb a7 08 08 0c 6a 1c 31 62	fd0ec5f90d16d56b42e04a41cb1c6e56
cc 3e ff 3b a1 67 59 af 04 85 02 aa a1 00 5f 34	4b b2 16 e2 32 85 cb 79 f2 97 77 ac 32 63 cf 18	4b b2 16 e2 85 cb 79 32 77 ac f2 97 18 32 63 cf	b48ef352ba98134e7f4d592086261876
ff 3c e5 b0 3f 53 6a 7c 08 e1 ab b7 9e 14 7b b9			