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Abstract: The concept of repair and restoration using additive manufacturing (AM) is to build new
metal layers on a broken part. It is beneficial for complex parts that are no longer available in the
market. Optimization methods are used to solve product design problems to produce efficient and
highly sustainable products. Design optimization can improve the design of parts to improve the
efficiency of the repair and restoration process using additive manufacturing during the end-of-life
(EoL) phase. In this paper, the objective is to review the strategies for remanufacturing and restoration
of products during or at the EoL phase and facilitate the process using AM. Design optimization for
remanufacturing is important to reduce repair and restoration time. This review paper focuses on the
main challenges and constraints of AM for repair and restoration. Various AI techniques, including
the hybrid method that can be integrated into the design of AM, are analyzed and presented. This
paper highlights the research gap and provides recommendations for future research directions. In
conclusion, the combination of artificial neural network (ANN) algorithms with genetic algorithms
as a hybrid method is a key solution in solving limitations and is the future for repair and restoration
using additive manufacturing.

Keywords: additive manufacturing; repair and restoration; design optimization; design for additive
manufacturing; artificial intelligence; hybrid method

1. Introduction

According to ASTM International, additive manufacturing (AM) technology can be
defined as making an object by joining materials layer-by-layer from 3D model data [1].
In industrial fields, there are many systematic methods used for prolonging the life of
components, tools, equipment, and devices. Conventional methods for repairing and
restoring the durability of parts mainly rely on human decisions and skills. However,
progress in manufacturing technology and automation in recent decades has led to repair
and restoration using AM technology.

At present, the repair of tools and components is widely used to enhance the circular
economy (CE). AM technology offers a good alternative for industry by saving repair
and restoration time and avoiding material wastage while maintaining the same product
durability. Prioritizing remanufacturing is an important aspect of achieving the circular
economy with end-of-life (EoL) recovery and the reproduction of complex old products to
the same original quality rather than being recycled [2].

CE is a transition and shift from the traditional principle of make–use–dispose to a
new era based on artificial intelligence [3]. There are several strategies used for circular
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product design. The first strategy is to increase recycling performance, the second is to
boost material performance, and the third is to expand the lifecycle of products [4]. Manual
reparation and restoration are now replaced by automatic and digital processes, such as
AM, where this process is capable of melting many material layers in one process [5].
Complex spare parts have a long lead time in the manufacture and production phases of
suppliers and have high costs. Downtime due to the lack of spare parts availability means
non-operation situations and stoppages. AM is the solution to reducing downtime, costs,
the number of unused components, and waste. It is possible to create flexibility by locating
AM systems near the operating units [6].

The advantages that lead to high demands for AM include creating complex ge-
ometries with good performance, customization, and lightweight products. Despite the
advancement in manufacturing technology, advances in design for AM are still lacking,
and more research is required [7]. This is important to improve the additive manufactured
parts during the early stages of development [8]. AM and AI can be used together to utilize
and combine knowledge toward intelligent physical network systems [9]. The exchange of
the product database and knowledge between design engineers based on AI through the
network is called collaborative design. It focuses on knowledge integration and big data
sharing toward better resource management and innovation in the AM domain [10]. Many
studies have explored the usefulness of artificial intelligence (AI) in additive manufacturing
and have concluded that AI-enabled additive manufacturing results in significant cost
reductions. Many researchers have investigated the applicability of AI in additive manufac-
turing. Literature studies show that researchers have proposed the implementation of AI for
speeding up prefabrication in 3D printing [11]. The involvement of AI in remanufacturing
using additive manufacturing increases the efficiency of the remanufacturing process. This
includes component design optimization to facilitate the repair and restoration process
using AM and will help to ease the burden on designers and manufacturers to analyze the
types of failures prior to the restoration process.

Hybrid additive manufacturing, also known as hybrid manufacturing, is a combina-
tion of additive manufacturing processes, such as directed energy deposition (DED), and
conventional manufacturing processes, e.g., computer numerical control (CNC) milling.
Hybrid manufacturing requires determining the sequencing process between subtrac-
tive and additive, generating process planning alternatives, and inspection operations.
Building a part from scratch or the repair of a component is considered the starting point.
Alternatives can be generated depending on the combination of subtractive, additive,
and inspection based on the combination of additive, subtractive, and inspection opera-
tions [12]. For further optimization, specific hybrid algorithms, such as the particle swarm
optimization (PSO) algorithm, and the evolutionary optimization, artificial neural net-
work (ANN), and genetic algorithm (GA) methods, can be adopted to improve additive
manufacturing processes [13].

This review paper identifies and highlights product lifecycle from different points of
view, including remanufacturing, design, optimization, applications, and the relationship
with AI. It also aims to highlight the benefits and application of artificial intelligence (AI) in
AM. It presents the latest trends in this research. Moreover, it involves many analyses and
evaluations regarding the methods of restoration using AM technology and how to work
with AI techniques to make them more useful and efficient. It also focuses on the methods
of design optimization of this restoration process by adopting the AI technique, including
using the hybrid method. It also explores and identifies all the means and possibilities
that lead to maximum benefits of design optimization-based AI in AM applications by
analyzing previous research in this field. The final findings of this review should answer
whether hybrid AI is the best application to enhance design optimization for the additive
manufacturing process [14].
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2. Background on Additive Manufacturing

AM is an advanced method for the repair and restoration of EoL components of com-
plex geometries by adding material layer-by-layer. Compared with the manufacturing of a
new product, remanufacturing is considered a good strategy for recovering the deformed
and broken components and saves material, time, and energy. In addition, to saving cost
and time, the other main reasons for restoring components by AM in the end-of-life stages
are environmental. Facilitating the rescue of recyclable components is one of the important
objectives in designing products for AM [2]. The idea of integrating remanufacturing and
AM processes is highly recommended for overcoming technological restrictions and for
improving the quality of restored components.

Three-dimensional parts can be built effectively using AM process by adding thin
material layers to the intended model. Complex parts are directly produced in a few
processing steps and without the need for new extra tooling such as casting molds [1,15].
AM technology is accepted as a good alternative for reproducing some complex components
for many reasons, such as decreasing the inventory, producing on-demand parts, and
having high efficiency [16]. The potential influence of AM on improving engineering
functionality and material performance is great. AM has a large impact on the aircraft
industry as the adoption of AM in the manufacture of components has many advantages
in terms of cost and optimum, lightweight design. A shift to AM technology reduces
greenhouse gas emissions and creates energy savings in the aircraft industry [17].

This promising method reveals many additional benefits which cannot be imple-
mented through the AM method, including the possibility of designing complex geome-
tries and reducing the environmental effects by avoiding scrap jams [17]. In addition, the
adoption of the AM process in the manufacturing of specific components will lead to a
reduction in overall weight and the enhancement of aircraft efficiency. The capabilities
and principles of AM technology presented for the restoration and rebuilding of complex
components to extend their working life for the circular economy depend on many factors,
including geometrical dimension, tolerances, complexity, and compatibility of the restored
material [18]. Based on the ASTM Standard F2792 [14], there are seven classifications of
AM processes, among these, two are suitable for remanufacturing, which are powder bed
fusion (PBF) and directed energy deposition (DED). Most AM-fabricated metal components
require postprocessing and heat treatment. DED AM processes and PBF AM processes
are considered direct-to-metal AM processes while ultrasonic additive manufacturing is
an example of an indirect AM process. There are some differences between the PBF and
DED-based AM techniques, depending on the quality, product size, and overall costs.
Based on high-energy heat sources and localized melt solidification, PBF AM and DED
processes fall under the same category and share similar fundamentals [16].

The ultrasonic additive manufacturing (UAM) process uses ultrasonic vibrations for
joining layers of metallic sheets. The feeding of raw materials depends on the type of
AM process. A laser beam is used for coaxially feeding the alloy powder into the DEB
process, while in PBF-based AM, to avoid defects such as poor mechanical properties and
bad surface finish, solid powders are used. The characterization of AM processes depends
on many factors such as dimensional accuracy, production times, size of the fabricated
component, and the quality of the product. One of the important techniques used in AM
for printing 3D objects is fused deposition modeling. This method is normally used with
polymers by the deposition of successive layers to build the model layer-by-layer. Fused
deposition modeling is a promising method in AM with a high impact on many modern
applications by reducing costs and operation time [19]. Laser cladding and directed energy
deposition are examples of advancements and development in repairing components using
AM processes.

Among many AM techniques, electron beam melting (EBM), selective laser melting
(SLM), and directed energy deposition (DED) are the most used in the restoration and
repair of product defects. A comparison was made for the fabricated Ti6Al4V using AM
methods and traditional manufacturing based on mechanical properties, microstructures,
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and processing parameters. In AM, the fatigue life of Ti6Al4V increases, and crack initiation
weakens if there are post-heat treatments [20]. SEM test and analysis showed significant
improvements in mechanical properties due to laminate formation in the AM process. It
is found that the increase in the number of laminates will make the distribution of added
material more uniform and reduce the possibility of void formation [21]. During the repair
and restoration process, energy consumption depends on the main characteristics of the
heat source. Gaussian profiles are used to calculate the distribution of power density on
the surface, as in Equation (1) [16]:

Pd=
f P

πr2
b

exp

(

− f
r2

r2
b

)

(1)

where Pd is the power density on the surface, f is the distribution factor, r is the radial
distance of any point from the axis of the heat source, and rb is the radius of the heat
source. Since the powder particles are small in size, powder-based AM processes are
suitable to produce smaller parts with good features, such as good strength, dimensional
stability, and smooth surface finish, while high-weight components are produced using
wire-based processes. AI can be used to enhance and make a good integration in AM
restoration by supporting decision making and enhancing the repair performance during
the remanufacturing process.

Challenges in Additive Manufacturing Process

The special characteristics of powder bed fusion-based additive manufacturing pro-
cesses, such as SLM and EBM, are based on a layer-by-layer process to melt metal powders
using a laser and electron beam, respectively. This brings its own challenges and limitations
with regard to the mechanical properties of the parts produced. The temperature, scanning
speed, and hatching distance influence the mechanical properties of the parts produced.
Therefore, concerning repair and remanufacturing, optimized manufacturing parameters
must be chosen to obtain the desired outcome. It is important to determine the most suitable
temperature for the AM process since it strongly correlates to the quality properties of the
part. Temperature parameters are also related to thermal conductivity and mass density.
There are many challenges in AM processes, such as the physical properties of the material
at elevated temperatures, the material geometry, and the properties of the raw material [22].
Hence it is important to control and monitor these parameters. Monitoring capabilities
are becoming an important factor in the development of AM processes, as they enable
quantifying and measuring the variables and detecting the process limitations. Moreover,
the monitoring of process defects and limitations will enable the verification of process
models. Each AM process has its specific limitations. For example, the beam interference
solidification (BIS) process is associated with technical limitations, such as the shadowing
effects from the insufficient absorption of laser radiation at higher depths and leading to
difficulties in obtaining the precise intersection of the beams [22].

SLM and EBM, being a PBF-based process, also bring challenges in repair and restora-
tion to the part geometry, with the addition of material only where required and obtaining
the exact dimensions. For other AM processes, such as directed energy deposition (DED)
and wire-arc additive manufacturing (WAAM), the process does not rely on a powder
bed and therefore is more suitable for repair and restoration. In DED, a laser is directed
toward the part where the heat source melts the metal powder or wire from above and
deposits it onto the surface of the part. Hence it is easier to correctly position the part for
the remanufacturing process.

Another important challenge in the AM process is related to carbon emissions [23].
Determining the carbon footprint of manufacturing processes and the environmental
impact are important steps that need to be further optimized to make processes greener
and more sustainable. Improvements in the AM process bring benefits toward carbon
neutrality and further improvements can be achieved [24].
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3. Artificial Intelligence Applications in Additive Manufacturing Technology

The most common definition of AI (artificial intelligence) is that science deals with
building programs for computer numerical machines to react and perform tasks like
humans [25]. It is the science of making computerized machines intelligent and thinking
and making a decision similar to humans through using some programming methods. AI
is a very sophisticated and powerful knowledge used in many planning and operation
systems with a great ability to deal with, manage, and respond rapidly in the minimizing
and solving of mathematical complexity. Mathematical optimization and comprehensive
analysis were implemented for solving the problem of designing power system stabilizers
by using different types of AI techniques [26]. Nowadays, AI is used by developers and
product designers as a great option for building many prototypes with multiple versions
at the same time to increase productivity and quality [27]. These smart technologies,
such as the Internet of Things (IoT) and AI, are good enablers for the circular economy
by accelerating information sharing between customers and companies through website
applications [28]. The rapid development of high-technology equipment results in utilizing
this evolution for enchasing and optimizing AM processes based on new concepts built
on knowledge and high-accuracy communication networks with technologies called the
internet of things (IoT) [28,29].

Prediction, diagnosis, and detection of damages and failures is the main purpose of the
use of AI in manufacturing applications. The ability to assist in the design and optimization
of different types of parts failures is another benefit to human knowledge related to many
fields of science such as design procedure, material science, and repair processes, which
are significantly required in intelligent system development. Better human replication in
decision making, thinking, and the ability to attain design optimization are the recent duties
of an intelligent system. While AM for remanufacturing is still dependent on human skills
and monitoring, it is important to integrate with AI systems by interlocking and orienting
these experiences and knowledge from skilled workers, and this will enhance the whole
design and optimization process. One of the interesting applications of AI is sustainable
computing. It is based on analysis and evaluation depending on green computing for
the elimination of hazardous chemical materials based on an improved algorithm [30].
Artificial intelligence is always deployed to simplify and facilitate the repairing process
by providing some opportunities that strengthen automation during remanufacturing
and restoration. A deep learning model is usually used for accelerating the topology
optimization process. In this method, the configurations of structural topology with the
minimum structural deformation are applied under various load conditions. The strategic
framework is based on the finite element method (FEM)removal strategy. Two special
convolutional neural networks (CNN) and recurrent neural networks (RNN) are integrated
into the deep learning model, as well as the long-short term memory (LSTM) [31].

AI can be classified as computational intelligence and symbolic intelligence. Computa-
tional intelligence, such as evolutionary programming, artificial neural network, and fuzzy
systems, is used for decision making, while symbolic intelligence is used for solving prob-
lems based on knowledge [32]. AI has a positive impact on AM, wherein the printability of
components can be analyzed and optimized before any postprocessing. Furthermore, the
process quality can be controlled and predicted for time-saving. Identifying part function-
ality, improving quality, and increasing productivity are the main objectives of adopting AI
algorithms in AM applications [33]. Combining subtractive and additive manufacturing
in the same domain will lead to the exploration and finding of a way to solve some of the
optimization complexity by adopting artificial intelligence techniques. These requirements
are crucial to assure product efficiency, especially since the target is to return the product
as new [34]. Some of the important AI methods used for optimization techniques in AM
applications have been summarized and provided in Table 1 according to the author’s
names, strengths, and main contributions.
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Table 1. The important types of AI that are used in AM applications.

AI
Model

AI
Specifications

AM
Applications

Remarks Refs.

• Particle Swarm
Optimization
(PSO)

• Works on a simple
concept.

• No need for big
memory.

• Inexpensive
computationally.

• Employed for
determining an
optimal design.

• Simple coded concept
and can be used in
lines of code without
demanding large
amounts of memory.

• PSO generates the
optimum data set for
the AM model. PSO
has a great ability to
reduce the number of
inputs and obtain an
optimum model.

[13,35,36]

• Artificial Neural
Networks (ANN)

• Information and
communication
transmission between
the nodes are similar
to the principles of
the nervous system.

• Speech recognition.
• Regression.

• Machine learning
(ML) is a common
application.

• Parameters
optimization.

• Strength of the
performance of the
process.

• Mechanical properties
estimation.

• ANN has a great
ability to model
nonlinear and
complex models
without limitations on
the input–output
parameters. Highly
efficient in design
modeling and
predicting the AM
complex components.

[29,36,37]

• Genetic
Algorithm (GA)

• Built on the principle
of genetic
reproduction

• Comes from the
concept of the
survival of the fittest.

• Determine optimal
product design and
optimization.
Parameters fitness
evaluation.

• Flexible and robust.
• The ability to explore

and solve complex
problems.

• GA merges with other
algorithms and works
as a hybrid AI in AM
applications to reduce
costs with
time-saving.

[7,29,38]

• Fuzzy Set-Based
System

• Depends on the input
and output state.

• Basic control system.
• Works depending on

the probability of the
input and output
state.

• Ability to solve the
uncertainty of a
problem.

• Avoids uncorrected
judgments.

• Ability to find the
best design solution.

• Decision-making
approaches.

• It is commonly used
in AM processes to
determine the model
cost. It is also used in
the testing and
qualification of
additive
manufacturing
components.

[10,14,39]

• Adaptive
Neuro-Fuzzy
Inference System,
(ANFIS)

• Applies a unique
algorithm known as a
hybrid learning
algorithm.

• Hydrology fields.
• Forecasting hourly

water levels and
rainfall.

• Dealing with high
nonlinearity such as
reservoir operation.

• ANFIS is a powerful
tool for modeling,
predicting, and
controlling many AM
processes. It has a
high simulation
accuracy with limited
weaknesses.

[40,41]

AI-based optimization consists of many types, such as fuzzy logic, artificial neural
networks, particle swarm optimization, and genetic algorithm. The flow chart process-
ing of the common artificial intelligence used in industrial applications is illustrated in
Figures 1–4 [29,36]. The adaptive neuro-fuzzy inference system (ANFIS) is normally used
with high nonlinearity applications such as forecasting and reservoir operation. It uses a
hybrid learning algorithm. ANFIS input models always involve a human decision, which
results in superior performance. Figure 1 illustrates this type of AI.
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Figure 1. The adaptive neuro-fuzzy inference system (ANFIS) architecture, as adapted from Ref. [40].

Figure 2. The particle swarm optimization (PSO) operation process, as adapted from Ref. [40].

Figure 3. The artificial bee colony algorithm (ABC) process, as adapted from Ref. [40].
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Figure 4. The genetic algorithm process, as adapted from Ref. [40].

Particle swarm optimization (PSO) is an evolutionary method of computation based
on the simulation of simple models. The advantages include requiring a smaller mem-
ory, higher computational speeds, and easier management. Figure 2 illustrates the PSO
operation process.

Artificial bee colony (ABC) is a revolutionary optimization algorithm. It can be defined
as a mechanism that occurs from the dynamic interaction between the structure and parts
disordered. The flow chart in Figure 3 shows this type of AI.

Genetic algorithm (GA) is a population-based optimization algorithm with a percent-
age of high reliability. It is a strong optimization algorithm with high performance. This
algorithm is always adopted as a strong tool in the AM optimization process. The flow
chart in Figure 4 shows the GA process.

AI is new support for AM in optimizing components and is considered a helpful
tool to enhance the CE [2]. The production of components using AM needs high levels
of specialized knowledge. Consequently, adopting AI can help in solving these issues by
reducing the conventional work performed manually through access to large amounts
and high accuracy of data. AM involves many stages, such as the preparation of the
3D CAD model, prototyping, and production. The domain of 3D printing is restricted
to product geometry and material type. Implementing AI to minimize computational
time becomes a necessity to speed up the remanufacturing process [11]. For optimum
weights computing, the algorithm network such as ANN is built firstly as a training
model. The model weight is a set of random values, and this training model is considered
completed whenever it approaches the optimal target. The property of a quick solution
to the optimization problems of 3D printing without the need to define an algorithm is
one of the significant features of the ANN method [29]. The useful applications of AI in
AM should focus on increasing the tool life predicting accuracy, minimizing the cost, and
decreasing manufacturing defects. The sequential strategy and systematic guideline for
enabling AI technologies as an industrial ecosystem include four main sequence steps: data
technology, analytical technology, platform technology, and operations technology [42].

AI and AM can be integrated toward more innovation, efficient production, and
enhanced competition between industrial companies. Scalability and compatibility between
AM with AI increase efficiency by increasing the decentralized production capabilities with
respect to volume and time [9]. Machine learning (ML) techniques such as AI networks and
ANN are highly suitable for solving problems of AM, especially in the area of control and
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monitoring due to their labeled datasets and availability. The lack of enough databases and
the shortage in the availability of accurate data are considered the main challenges in the
advancements of ML for AM processes. Other reasons involve a lack of standardization for
handling high-velocity and high-volume databases in exact time [43]. AI-based methods
are more capable of replicating expert humans in the decision-making and repair process.
Additionally, it is capable of responding to large quantitative and qualitative data at the
same time.

4. Design Optimization Methods for Repair and Restoration Using AM

Optimization is defined as the best way for a better solution to recover the maxi-
mum functions under specific conditions. Design optimization is the process that leads
to eliminating or removing the design constraint and limitations that were previously
encountered during the part manufacture with affordable cost. The potential planning and
implementation in AM are enhanced by adopting AI for design optimization, monitoring
process, and the detection of defects [44]. Design optimization of parts is enhanced using
AM because the designer gains a wide space of freedom when the design process is fully
computerized. The suitable optimized design is considered an important step in identifying
the AM objectives. Optimization methods are great tools that are usually used within AM
applications to emphasize the component’s value in many disciplines, such as minimizing
the mass and cost and maximizing the production and profits [28]. Obtaining a lightweight
part while maintaining the same performance and mechanical properties is significantly
achieved by adapting the design optimization method. This includes stripping away some
of the unnecessary metals to meet the optimum design. Improvements in design include
minimizing the weight, strength enhancement, and reducing the residual stress [45]. The
criteria in decision making are based on account of different parameters and give the
solutions that have the best fit with these parameters. It starts with the best-optimized
design by comparing the weight, manufacturing cost, strength, and surface quality. The
criteria weight factor is calculated according to the strength, weight, and customer’s point
of view. The systematic procedure for selecting the optimum design based on specific
criteria is presented schematically in Figure 5 [46].

 
Figure 5. Multi-design optimization analysis, as adapted from [46].

Restoration design should take the option of product disassembly in the future as a
targeted strategy to reach the optimal design. Consequently, product restorability must
involve all of the concerned aspects, such as conditioning and the machining process, to
ensure appropriate component recovery. It is necessary to be sure that the design integrates
well with some processing repairs.

AM is classified as a sustainable method and mostly linked to a CE besides many
benefits involving time and cost-saving. There is more than one proposed technique dealing
with AM including mathematical and optimization techniques; however, a wide effort is
still required in other areas, such as design, for supporting this process [35]. In the AM
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industry, any suggested design for complex products should be considered as an approach
toward repair, restoration, and tool longevity. The principal path in design for restoration
can be subdivided into the design for repair, the design for remanufacturing [47], and the
design for refurbishment [48].

The advantages of AI techniques in AM are attributed to high flexibility in solving
complex design issues with its strong capability in strengthening efficiency and executing
high accuracy in design optimization. To sustain the supply chains of the spare parts,
specifically the complex parts, redesigning and reconfiguring for AM can extend the
product life cycle to maintain materials resources and keep simpler and shorter supply times.
Design for AM is focused on extending the part functionality toward high performance in
the AM domain. Building a design method for AM based on the growth of internal stresses
parallel with part repair and shape morphing optimization will enhance the efficiency and
effectiveness of the process [49].

Design for AM framework includes information on component geometry, feedback
information, and stepwise evaluation during each operation step. The lack of understand-
ing and knowledge is recognized as one of the key problems relating to the design and
optimization in the AM domain [50]. Design optimizations based on AI techniques for AM
applications are crucial due to their impacts on the whole efficiency and circular economy.
It is a priority to optimize the essential design to enhance the efficiency of the repair and
restoration process in additive manufacturing. It is reported that the use of design and
optimizations of AM is still limited for many reasons. It concluded that the use of AI in
design optimization will facilitate and remove many obstacles and limitations in front
of an efficient restoration process [51]. The motivation behind using the AI technique
in AM is to improve and ensure the quality of the parts, relying on its automatic ability
in predicting and improving quality by preventing design and production defects. AI is
widely used in AM execution and is used as an assistance factor in AM planning, e.g., the
design process [44]. In many engineering applications, optimization is indispensable,
especially in mechanical design. The critical factor in optimization time is the number
of design evaluations. Large and multiobjective optimization algorithms require highly
expensive computational analysis [52]. AM is a fully automated process and digital tech-
nology through all steps from the design stage to the final printing, so the development
of data networks of machine learning and artificial intelligence leads to high progress in
the AM industry [41]. Design for AM means optimizing all steps followed in the basic
manufacturing process of the intended product. It includes three essential steps: materials
design, process design, and component design. The design activities include three sequence
levels, as illustrated in Figure 6.

The classification of design optimization is usually based on different methods. It
depends on many orientations, especially whether the optimization is a multiobjective
or single-objective problem. There are many disciplines in design optimization, such
as multidisciplinary optimization, optimization algorithms, and structural optimization.
There are many algorithms for solving optimization problems. Evolutionary optimization
algorithms (EA) such as GA are used to mimic evolution to estimate the optimum design. It
is robust and can be adopted for the evaluation of a high number of design problems until
it reaches convergence values [7]. One of the important tools for the planning, designing
and optimization of multiobjective and complex problems that emanate from AM is EA.
It is a subset of the many iterations and computing processes associated with machine
learning. EA is a branch of artificial intelligence and becomes more necessary in the
design process coinciding with the evolution of hybrid manufacturing [6]. The powerful
computational model artificial neural network ANN, which consists of a network of nodes,
is very useful in solving some AM problems and is used for making good predictions. The
two categories of machine learning, supervised and unsupervised learning, are adopted
for high-level classification, predictions, and regression. Artificial neural networks ANN
have very good capabilities for solving many AM problems and especially for complex
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task processing [43]. Both artificial intelligence and machine learning are integrated and
contribute to AM development.

 

Figure 6. Design activities that form the art design process for AM.

Systematic design optimization is proposed to enhance the performance of the AM
process by considering and enabling product changeability during its working life, not just
in the design stage, to maintain better performance [53]. Multiobjective optimal design
based on genetic algorithms is used for optimizing the performance of a planetary gear
reducer [54]. Design for multiple lifecycle strategies is not certain due to a lack of clarity in
the expected operations that are required for each step of recovery as well as the unclear
expectations in quality [54]. The most evolutionary optimization technique is the genetic
algorithm. It has always been adopted to optimize many complex problems. The most
accurate description refers to GA as the survival of the fittest as an optimization technique
built on evolutionary rules [54]. The redesigning of the AM process depends on many
variables [55]. The process can make parts more expensive than the original part. AM can
reduce the mass depending on print speed and part size.

Two methods are used in implementing shape optimization. The first is called designer-
driven shapes, which depends on the principle of optimizing the design by reducing the
mass and printing time by using the shape lattice to make self-support. The second one
is the process-driven shapes, which uses topology optimization to reduce the mass [35]. J.
Kranz et al. [21] presented layout design guidelines for laser AM of lightweight structures
through multiple iterations to offer designers a buildup of their design according to AM
restrictions from the first stage. B.Thamaraikannan et al. [56] used a hybrid teaching–
learning-based optimization TLBO algorithm to investigate different design optimization
problems to solve some technical problems such as volume minimization of a closed coil
helical spring, weight minimization of a hollow shaft, and weight minimization of a belt-
pulley drive. It is an evolutionary algorithm and has been proven to be more efficient
than some existing optimization techniques such as hybrid PSO, ABC, and GA. In many
engineering applications, the design optimization process is performed implicitly. It of-
ten depends on modeling and judgment to reach the optimal solution. The availability
of quantitative models is important to obtain the optimal solution. The most important
step in design optimization is to validate an accurate model. For example, in additive
manufacturing, to minimize the cost, it is important to be able to calculate the actual cost
from the beginning. Despite some drawbacks in the analysis program, especially for that
which require greater execution time, GA is widely adopted in the design optimization



Metals 2023, 13, 490 12 of 22

of many AM applications due to the superior options, such as the trial-and-error search
and inheritance characteristics to perform best designs, such that the genetic algorithm can
build remarkable results faster for problems with a large combinatorial domain search [57].
Maryam Daneshi et al. [58] developed an optimization tool framework based on hybrid ma-
chine learning which can be used in the design of solar shadings and the evaluation of their
efficiency. The results obtained estimation functions that are suitable for finding the solution
in machine learning and can generate a consistent database toward optimal models.

Redesign and optimization are used to upgrade the repair components by using a
hybrid AI method through evolving the material distribution within the specific design
domain to maximize the material fraction. A hybrid algorithm is a numerical tool used for
forecasting and suggesting better improvement parameters that lead to optimal material
distribution [59]. Metamodel-based design optimization uses multidisciplinary design
procedures to approximate, simulate, and compute some of the expensive models. In
comparison with the genetic algorithm, the required number of simulations to implement
the optimization is too low for the specific algorithm to implement the optimum solu-
tion [60]. Vladislav Andronov et al. [61,62] proposed and investigated an optimization
methodology to reduce production costs and increase productivity through additively
producing a tool steel layer with a thickness of 100 µm. The employment of hybrid AM
by combining additive and subtractive manufacturing reveals great improvements and
enhanced product quality.

5. AI-Based Design Optimization Methods for AM Repair and Hybrid Method

The term “hybrid” refers to merging more than one algorithm technique to generate a
new optimizing technique with gaining new features better than the individual method.
The most significant characteristics of hybrid algorithms are the few iterations and compu-
tational steps, high convergence speed, and low effective cost compared to other algorithms.
The parameters of any suggested hybrid algorithm are defined as the number of possible
answers and the main objective for implementing this algorithm. The possible answers
(iteration numbers) are defined as a matrix. The ability to solve many complex issues
efficiently has brought a lot of attention to hybrid AI in recent years, especially in design
and optimization applications. It is now possible to diagnose the failures and adjust the
effecting parameters to find suitable solutions by creating algorithms. Developing expert
systems using AI techniques is also significant while the expert system can develop as
an expert-controlled system [51]. Despite the advantages of using AM technology, which
include cost and time-savings, there are deficiencies in dealing with components of complex
geometries. Dealing with AM in the aspect of design and optimization is crucial to enhance
this restoring method and support the designer in concentrating on complex shapes and
restoring them effectively. Future research is required on design optimization for AM to
provide a valuable vision for this industry [63]. One of the important aims of the design
for optimization approach is the devising of components according to customer needs and
making necessary modifications without interventions from humans.

Some reasons, such as the difficulty of evolving efficient design thinking, led to the
recording of several limitations in AI-based design optimization related to component im-
plementation in AM [64]. Consequently, developing and integrating hybrid AI techniques
are considered crucial steps toward developing AM technology. Some other challenges,
such as the generalization of genetic algorithms, are reported with several types of AI
optimization such as genetic algorithms. Moreover, AI optimization has some limitations,
including time costs, due to the accuracy of the solution requiring to be rerun to the basic
model many times to approve the solution according to the basic hypothesis and param-
eters. In the optimization process using a hybrid algorithm, the type of trigger, number
of generations, and population size are essential to making decisions in GA, while the
neuron’s number and type of network topology are used to make decisions in an ANN
type [51]. Applications of AI in the optimization AM process have been widespread in
recent years according to many literature indications. The literature recently revealed that
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the method of hybrid optimization has shown a better capability with accurate results.
Merging more than one technique as a hybrid technique is a good solution to integrate,
increase capability, and enhance the strength of AI in solving complex problems. However,
the important aim of any design optimization method for the restoration process is to
be sure that the process is efficient regarding cost and time. The powerful optimization
techniques abridge thousands of evaluation processes in fewer steps and in a shorter time.

An optimization method was implemented on a worn crankshaft according to the
theory under uncertainty conditions resulting in a 5.6% cost reduction, 7.3% saving time,
and 2.5% quality improvement [64]. Aydin Azizi utilizes a hybrid AI technique in modeling
to perform a hard learning optimization from two different algorithms with a universal
manufacturing system, and the result was successfully implemented. The design of a
hybrid cellular model for sustainable manufacturing–remanufacturing was built to increase
the reliability and flexibility of this process [28,65]. Minimizing total costs concerning the
supply chain and the hybrid cellular system was the main function of this hybrid model [66].
Min-Yuan et al. [67] approved that the hybrid particle bee algorithm PBA was formed by
combining particle swarm optimization and bee algorithm BA to facilitate layout design
problems. It has been found that this algorithm has better performance than some other
techniques in terms of benchmark functions and the ability to solve engineering problems
with accurate dimensionality [67]. A general hybrid model involving a combination of
dynamic programming and genetic algorithm is used in design optimization to develop
an energetic model for hybrid electric vehicles by minimizing fuel consumption and
battery size. The outcome was a 5% reduction in fuel consumption and minimizing
the battery size [36]. Virtual model links that are used to connect the components will
be inserted inside a binary-level optimization and then utilized by the use of genetic
algorithms in the optimization process. This general hybrid model is also used to calculate
fuel consumption and dynamic performance [36]. The conventional method was fused
with the evolutionary computing method to develop a hybrid system for computing,
optimizing, and forecasting climate and water resources. Genetic algorithm and genetic
programming (GP) were adopted together to form a hybrid algorithm for optimizing the
reservoir operating system [40].

Along with probability, statistics, and classification, AI also involves many techniques
and tools that are considered very suitable for logical regression and optimization. AI
models can be classified into two main categories, supervised machine learning (classi-
fication and regression) and unsupervised machine learning approaches (clustering and
optimization algorithms), as illustrated in Figure 7 [40].

Multi leader optimizer (MLO) is an optimization algorithm able to provide appropri-
ate and more competitive solutions for the optimization of problems by comparing and
analyzing many iterations of results until reaching the appropriate solution [68]. Ghoreishi
et al. used advanced meta-heuristic optimization as a hybrid algorithm by combining the
gray wolf optimizer GWO and sine cosine algorithm SCA for solving the problems and
optimizing the antenna architecture design [64]. This optimization algorithm is a versatile,
practical, and reliable platform for optimizing design parameters [69]. Aydin Azizi [28,52]
used a ring probabilistic logic neural networks (RPLNN) optimization technique with
redundant antenna elimination (RAE) to compose a new hybrid technique to calculate the
required number of antennas that need to be deployed and expand the coverage area for
radio frequency identification [28].

A combination of hybrid co-evolutionary genetic algorithms with a fuzzy formulation
is proposed for the optimization of gas-production systems. The newly formed algorithm
is utilized for improving the allocation and production rate as well as minimizing the
operation costs. The network representation of this optimization system as a case study for
synthetic gas gathering is studied by Park et al. [38].
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Figure 7. Machine learning classification, as adapted from [40].

Maryam Daneshi et al. [58] used the NSGA II algorithm with machine learning models
as a hybrid tool in the design, development, and evaluation of the performance of static
solar shadings. The findings reflect the high activity of this tool, which is capable of the
design and evaluation of solar shading in various spaces [58]. In hybrid AM, instead of the
raw material, manufacturing starts from the point at which the part lost its main function.
The deposition of material layers is directed toward the damaged zone to compensate
for the geometry shortage [30]. The damaged component will either be repaired or the
functionality of the part will be upgraded, as shown in Figure 8.

Figure 8. Design domains arrangement: (a) design domain before AM and (b) additive manufacturing
design domain.



Metals 2023, 13, 490 15 of 22

Three AI approach techniques (purely AI, integrated, and purely analytical) are com-
bined for optimizing PSS. A fuzzy system is used to solve linear relationships between
complex variables and set the optimal parameters [26]. An ABC algorithm and an ANN
were combined as a hybrid AI to predict and optimize the penetration rate in a gas well, and
the results were very useful [70]. The genetic algorithm was merged with particle swarm
optimization to reimburse some deficiencies in genetic algorithms, such as slow calculation
speed. The new hybrid optimization algorithm was generated with a reliable solution
and fast calculation [30]. Ivan Peko et al. [39] used the multicriteria decision methods
ranking organization method (PROMETHEE), analytic hierarchy process AHP, and fuzzy
AHP for solving the AM selection problems. Optimization algorithm-based finite element
analysis and genetic algorithms were applied as the best combination to reduce the weight
problems and minimize the manufacturing cost limitation [71]. The ANN algorithm was
fused successfully with GA for the design optimization of the quality of laser cutting to
predict and determine the set of parameters responsible for quality optimization and to
predict output findings [37].

The main aim and applications of AI are to reduce the costs of the computational
optimization process. CAD modeling is used for creating and evaluating parts or products,
while design optimization is adopted to find better design fits to be set for specific require-
ments. Design optimization tools can improve assembly time and are better at building
by reducing the number of items in a product in an existing assembly by performing a
kinematic analysis to ensure the best-integrated functionality [7]. This optimization process
is presented in Figure 9 [70].

Figure 9. Optimization process, as adapted from Ref. [70].

The main aim of the hybrid algorithm in the optimization process is to reduce com-
putational costs. The comparison between optimized models and stand-alone models is
illustrated in Figure 10 [40].

Hamid Moeeni et al. [72] merged the ANN with a GA as a hybrid model for forecasting,
examining, and comparing the monthly inflow to a dam. In this search, a novel hybrid
ANN–GA has been employed. The procedure of the hybrid (ANN–GA) used consists of
multilayer neural networks such as one or more input, hidden, and output layers. The
information presented in Sections 4 and 5 regarding design optimization methods for repair
and restoration using AM and AI-based design optimization methods brings us to the
recommended solution of combining GA and ANN to form a hybrid method for repair
and restoration using AM, as presented in Figure 11. This recommendation is explained in
detail in Section 6 for future research directions.
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Figure 10. Comparison between (a) stand-alone model and (b) optimized models, as adapted from
Ref. [40].

 
Figure 11. Recommendation for the hybrid method of repair and restoration using AM.
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6. Discussion and Recommendations for Future Research Directions

In this review, exploring the important impact of AI on the AM domain is the main
objective of this work. Despite some downsides and difficulties of integrating AM in indus-
try with current trends of industrial applications, especially small and medium volume
production, it is obvious that AM is expected to be the main method in the restoration of
complex components [73]. To name a few, repair and restoration do not require additional
tooling, and this will lead to further reductions in time, energy consumption, and produc-
tion costs. Accordingly, developing guidelines and standards through real collaboration
and commitments between industrial companies becomes an urgent mission [74]. AM
uses far less energy than traditional machining in terms of personnel and tooling [75].
Design optimization methods in repair and restoration can reduce the weight of parts while
maintaining the same mechanical properties. Many works in the literature confirm that
artificial intelligence algorithms can confirm the optimal orientation for the restoration
process of many complex parts.

Most of the design optimization-based algorithms used by researchers are stand-alone
algorithms due to the complicity and high computational time cost of combining more
than one algorithm for this purpose [76]. Optimization problems are classified as highly
provisional problems and require a wide knowledge of many disciplines. Consequently, the
combination of adequate techniques is the key to solving these problems and achieving op-
timal optimization. Hybrid AI techniques are a combination of some individual techniques
that benefit from their advantages and overcome the weaknesses of each stand-alone tech-
nique. This will develop a significant feature and add important values that lead to more
motivation for the overall AM process [3,77]. Composing functional hybrid techniques for
optimization purposes depends on the strong features embedded in each one. For example,
the hybrid AI that results from the merging of ANN with the hybrid genetic algorithm
will utilize the fast filter of GA and fast selection with accurate calculation of ANN to com-
pose an effective optimization technique in providing a high-accuracy prediction. Some
reviewers concentrate their research on the determination of the build orientation-based
design algorithm of the final product, which has a high impact on the overall AM qual-
ity [78,79]. Another example of adopting a hybrid technique from many researchers for
design optimization purposes is the use of the ANFIS technique, which is a combination
of ANN and fuzzy logic (FL) for solving geological problems and for achieving both the
quantity and quality of the mining process [80]. The FLC is flexible and has an intelligent
strategy, an application-appropriate interface, an aggregate of several control algorithms,
and a straightforward computing and learning system. It is also very versatile [81].

Knowledge-based optimization techniques such as ANN, GA, particle swarm opti-
mization, and fuzzy logic, when hybridized with other algorithms, can be deployed to
provide a professional system to optimize the design parameters in the restoration process
and can offer decision making. Many types of research confirm that optimum repair using
AM has to be built on restoration strategies from the first design step according to the part
complexity and system capabilities. The integration between AM technologies and AI in
many disciplines such as ML adds significant value to the overall design procedure and
enhances process efficiency. AI can be deployed in numerous AM applications, such as
error detection, prediction as well as decision making. Many types and categories of AI
techniques can be deployed in many AM domains, such as ANN, genetic algorithms, fuzzy
logic, and particle swarm optimization, in addition to many other hybrid techniques. Each
of these techniques has its own specific strength, weakness, and applications. While the
main target of adopting the AI technique in the AM domain is to support and achieve
better design optimization and facilitate the overall restoration process, especially for com-
plex geometries, it is necessary to merge more than one technique in a hybrid method
which comprises the important strength characteristic of each stand-alone algorithm. The
effectiveness of hybrid techniques is attributed to their important ability to predict the
orientation of the optimization process and their ability in solving optimization problems.
The expected hybrid technique should have scalable knowledge with a reliable database
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that enables decision making about whether the specific part is capable of being restored
to the original case or not. Moreover, further deployment of the hybrid technique-based
design optimization should be built from the first step on the ability to support the product
design and cost optimization for restoration purposes.

Many of the above aspects regarding repair and restoration using AM have recorded
some restrictions and limitations in the optimization cost. Therefore, to gain advantages, de-
sign optimization for AM processes needs to concentrate on high-value parts and complex
geometry components. Based on the findings presented in this review paper, the following
are key points and recommendations for future work directions in the design optimization
of AM parts for repair and restoration based on AI.

• The mechanical properties of the parts manufactured using AM are influenced by
the manufacturing parameters used, such as temperature, scanning speed, hatching
distance, and energy density. Future research should concentrate on optimizing these
manufacturing parameters to obtain the best mechanical properties as well as to
further reduce cost, time, and energy consumption.

• Optimization for AM needs to focus on removing the unstressed segments in a specific
part and then make a comparison before and after to meet the functional requirements
to create the optimized geometry.

• The design Optimization for AM should be decided and recommended from the first
design step.

• Future research needs to adopt many missing issues related to conducting AI with
AM. These missing aspects include the application of AI in cost estimation, forecasting
the mechanical properties, raw material assessment planning, and postprocessing
improvement.

• Circular strategies should follow comprehensive guidelines in conjunction with compa-
nies’ annual planning in dealing with the movement of materials and resources toward
recirculation and reuse by adopting a design optimization-based hybrid method for
the restoration of all complex components.

• Combining algorithms to form a new hybrid can add significant value to the AM process.
• Optimization is always required from AI models. Forming hybrid models by merging

the stand-alone AI with optimization techniques is a survival collar for solving complex
issues related to the AM industry.

• While many products are not designed for the AM process, there is also no feedback
from companies wishing to redesign. Consequently, and toward an efficient design
for remanufacturing, it is widely advised to feed remanufacturing companies with
information relating to the specific restructuring components.

• It is important to realize that for any specific part under restoration, the product scale
is a significant issue; hence focusing on controlling the length scale to avoid a small
thickness, which is hard to machine, and finally, the overall size of the part should not
fall lower than the printing machine resolution.

• The ANN algorithm can simplify the models, shorten the necessary time for building
the network and minimize the number of input variables toward efficient optimization,
while the genetic algorithm is used for reducing the number of variables.

• Finally, combining the GA with an ANN algorithm to form a hybrid algorithm is
recommended for solving the optimization problems regarding the AM process and
emphasizing material strength.

7. Conclusions

This review paper presents a wide explanation of many aspects relating to AM tech-
nology for repair and restoration using AI in design optimization, focusing on specific
elements, such as design objects, optimization procedures, and applications of AI (hybrid
method) in the AM domain. AM is widely reported in many reviews, and the need for
further exploration of the overall influence and impacts of new applications in AI should
be fully understood. The guidelines proposed are hybrid; however, at the same time, it is
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possible to detail and tailor them according to the available restoration domain. It is worth
noting that not all materials are suitable for optimization. As a priority, it is necessary to
make a database of information and knowledge involving such types of materials.

There is no specific or systematic methodology to empower industrial designers in
the field of AM for the redesign and optimization of existing components. The literature
survey led to addressing and identifying some challenges that are still not solved which
require more research to facilitate and overcome the limitations of implementing AI tools
into AM applications. However, there are also some success stories for the adaption of
AI as an efficient analytical tool, and in the interaction between AI and AM, such as in
robotics applications and machine learning. The study concluded that components intended
for restoration are advised to be designed basically for these purposes, to recover and
extend the product EoL in the circular economy. Sharing information between industrial
companies and stakeholders for the data, especially for high-value products, to enable a
time calculation to be made for the remaining useful life of components. AM is still without
standardization, and this is one of the limitations; a lack of a database of information
regarding the remaining useful life of complex components increases the challenges for
the adoption of this method. The programming, digitalization, and the IoT in design
optimization lead to empowering AM toward a more effective life cycle and circular
economy. AI is rarely used to predict parts orientation or to estimate the cost. Execution
processes, such as defects and quality monitoring, are the most common applications for
AI in AM.

It can be concluded that large parts are not suitable for redesign optimization by
AM processing because of the prohibitive costs; however, it can be used to increase the
performance of the part. It is worth noting that there are still other gaps and challenges
concerned with estimating the remaining useful life of complex components at different
stages of their working life. As well as the basic concept of design optimization in the AM
domain and tool development, it is also concerned with the environment in reducing energy
consumption, materials, and pollutants. For an efficient optimization process, it becomes a
priority for researchers to adopt the early design for the restoration and circular economy.
Hence, planning for future recovery operations during the initial stages of product design
is an important mission.

In conclusion, designing an optimization-based hybrid AI for restoration through AM
can enhance the design parameters and overall product quality. Combining subtractive
manufacturing and AM in the same domain will lead to the exploration and discovery of
solutions to solve some of the optimization complexity by adopting artificial intelligence
techniques. These requirements are crucial in assuring product efficiency since the target is
to return the product to its as-new condition.
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