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Abstract: Edge-aware smoothing has proved to be a fundamental technique for various image processing and computer vision
tasks. In this paper, we introduce a local, non-iterative and effective edge-preserving filter namely guided adaptive interpolation filter
(GAIF). GAIF can be used as a post-processing step after any smoothing filter to improve its edge preservation performance without
reformulation. GAIF has an O(N) computation complexity where N is the total number of pixels in the image. To further increase
the efficiency of GAIF at edge-preservation, two techniques are introduced and demonstrated. GAIF efficiency is demonstrated and
compared to state-of-the-art techniques on a number of tasks including image smoothing, flash/no-flash image denoising/fusion,
single image dehazing and image details enhancement.

1 Introduction

Image smoothing is a fundamental tool for several applications such
as edge detection, feature extraction, and image restoration. Conven-
tional linear time-invariant (LTI) filters are utilized to remove noise.
Although these filters are computationally efficient, they are oblivious
to image content and structures usually resulting in undesirable visual
effects. This is due to the use of a spatially-invariant kernels which
leads to smoothing or enhancing both; image structure and noise.

To address this problem, researchers have developed and studied
numerous non-linear alternatives (spatially varying kernels) called
edge-aware filters. The goal of edge-aware filters is to avoid smooth-
ing across significant boundaries while eliminating the unimportant
details. There are several edge-aware filters including: bilateral fil-
ter [1], weighted least square filter [2], edge-avoiding wavelets [3],
guided filter [4], L0 smoothing [5], L1 smoothing [6], region co-
variance [7], domain transform [8], local Laplacian filter [9], weighted
median filter [10], fast global smoother [11], fast domain decomposi-
tion [12], the bilateral solver [13], L0 gradient projection [14], side
window guided filtering [15] and guided wavelet filter [16].

In addition to edge-aware smoothing, these filters are broadly
utilized in numerous applications in image processing and compu-
tational photography. Examples include image de-noising [12, 17],
detail enhancement [3, 18], image fusion [19, 20], texture smooth-
ing [11, 12, 21–23], single image haze removal [24], tone mapping
of high dynamic range (HDR) images [2, 3, 10, 23, 25], anomaly
detection in hyper-spectral images [26], object classification accuracy
enhancement in hyper-spectral images [27], enhance the output of
semantic segmentation algorithms [13], depth super-resolution/up-
sampling [11, 13], image colourization [3, 11, 13], image colour
quantization [12], scale-space filtering [12, 22], style transfer [10, 12],
optical flow estimation [10], compression artifacts removal [14, 22],
content-aware resizing and stereo matching [10].

From the earlier review of the current state-of-the-art edge-aware
smoothing algorithms, it can be noted that most of them are based on
the idea of preserving distinctive structures while smoothing small
scale details. Inspired by the success of recently published works on
edge-aware filters and their valuable applications, the goal of this
work is to propose and investigate a new edge-aware filter called
guided interpolation edge-aware filter (GAIF).

This work is motivated by the guided image filter (GIF) [4] and
adaptive interpolation filter (AIF) [21]. The key idea of this work is
that edge-aware smoothing can be obtained by a local interpolation
between the input image and a guidance image which, in the simplest
case, could be a linearly smoothed version of the input by using
a Gaussian filter. A fundamental difference between this work and

those based on the AIF is that in this work the edges and the flat
regions in the resultant image are locally selected from the original
image and the guidance image, respectively, through interpolation
process. On the other hand, in the AIF, the interpolation process is
achieved by an iterative pixel-wise process over the entire image.
Although the interpolation process in the AIF is achieved through a
linear process, it is an iterative filter. As a result, the proposed filter is
computationally more efficient than the AIF.

On the other hand, GIF assumes a patch-level linear model instead
of the interpolation in GAIF, in other words, an output pixel is pro-
duced as a linear model of the patch centred at the corresponding
pixel in a guidance image.

In the following sections, related works are summarized in section
2. The mathematical model of the proposed guided adaptive inter-
polation filter, an algorithm to solve it, and a way to extend it are
presented in section 3. Section 4, is a discussion about the impact
of parameter tuning and the smoothing performance. Applications
demonstrating the efficiency of the proposed filter are presented in
section 5. Finally, a brief discussion and a conclusion about the results
are presented in section 6.

2 Related Work

Non-linear filters can be divided into two groups based on the locality
of the filtering effect; local filters which represent most of the non-
linear filters in the literature [28] and global filters which are usually
the solutions to optimization problems such as the weighted least-
squares based (WLS) filter [2] [29] [30].

2.1 Kernel-based filters

Smoothing in kernel-based methods is achieved through a weighted
average of the input signal values to yield each element of the output.
The kernel is used to measure the similarities between pixels. These
similarities are normalized and used as the weights for the averaging.
Specifically, the filtered pixel denoted yi is computed from the pixels
of the input image denoted {xj} as shown below:

yi =
∑
j

Wijxj (1)

where the weight Wij is a function of the image to be filtered [1] or
another image in the case of joint/cross-filtering [31]. Milanfar et al
[28] has presented an excellent exposition about this kind of filters.
Kernel-based filters are generally considered to be local; because, a
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filtered pixel is computed as a weighted average of its surrounding
pixels.

2.2 Guided Image Filter

The guided image filter (GIF) [4] has received a great deal of attention
by the community because it has many desirable properties. For exam-
ple, the filter formulation, intuitively, makes sense from a statistical
regression perspective, and the algorithm is computationally efficient
O(N). In addition, filter results are very compelling. These qualities
contributed to GIF’s popularity and motivated other researchers to
borrow ideas from it. Ham et al [30], adapted the idea of guidance
image to the regularization term at the global level of image rather
the patch level as is done in the GIF. Li et al [32], introduced weight
to the regularization parameter to enhance the edge-awareness of the
original GIF. Lu et al [33] have proposed another weighting function
which is more robust to the regularization parameter.

The original guided filter (GIF) [4] assumes a local linear patch
model. A pixel at location p in the kth patch Ωk is represented as
p ∈ Ωk. The pixel in output image Jpk (the subscript k refers to the
kth patch) is related to the corresponding pixel in the guidance image
Gp in the following way:

Jpk = akGp + bk ∀p ∈ Ωk (2)

where ak and bk are model parameters for the pixels in Ωk . They are
determined by solving the following optimization problem:

arg min
ak,bk

C(ak, bk) =
∑
p∈Ωk

(akGp + bk − Ip)2 + εa2
k (3)

where ε is a user specified regularization parameter. Since for a square-
shaped patch of |Ωk| pixels, a pixel Gp belongs to |ωp| overlapping
patches. Each resulting in an output patch. GIF takes the average of
these outputs as the final filter output Jp.

Jp =
1

|ωp|
∑
k∈ωp

Jpk (4)

where ωp is the set of patches to which the pixel p belongs. This is a
simple model averaging process. For completeness here, we mention
that other forms of model averaging can be adopted [34].

The idea of using a pair of images to produce the output image
was first described in the joint/cross bilateral filter [35] [31] which
included the guidance information in an ad-hoc fashion. The idea
made disciplined in [4] [36] by modelling the image patches as a
linear transformation to the corresponding patches in the guidance
image. Extensions to this idea include using two guidance images
[37], and making the guidance procedure global rather than local
[38].

2.3 Energy minimization global filters

Most of the optimization-based filters are global filters. In another
word, they minimize a cost function calculated over the whole image
as opposed to the patch-oriented approach. In [39], Xu et al proposed
the relative total variation (RTV) measure to distinguish between
structures and texture. Later, RTV is used as a regularizer in a global
optimization problem. RTV achieves good texture smoothing. Zhou
et al [22] proposed a scale-aware measure and included it in an
objective function to achieve scale-aware filtering called Iterative
Global Optimization filter (IGO). Liu et al [40] proposed a global
optimization model involving truncated Huber function, the resulting
model is non-convex and non-smooth, leading to some desirable
properties. The authors demonstrated the effectiveness of this model
on a number of tasks. A major drawback in these methods is their
computational complexity which comes from solving large linear
systems [11] [41] [12].

2.4 Interpolation based filters

Al-nasrawi et al [21], proposed a pixel level edge-aware smooth-
ing technique that utilises the idea of interpolation between two
images, which are the observed/original image and a smooth version
of observed/original. The filtering process proceeds in an iterative
fashion and the interpolation weights are updated in each iteration
based on the residual between the observed/original image and the
current estimate image.

Unsharp masking [42] is a classical technique used to improve the
sharpness of an image. Two versions of the input image are used to
produce the result, a sharp negative version and a smoothed positive.
The parameter in unsharp masking is usually fixed throughout the
image domain. Main applications of unsharp masking revolve around
contrast enhancement.

2.5 Edge-preserving filtering

Several edge-preserving smoothing operators have been proposed in
the literature. One of the earliest of these operators is the bilateral
filter [1], which has been used in numerous applications including
HDR tone-mapping [43], [44] and highlight removal [45]. A major
drawback in the smoothing performance of the bilateral filter is the
gradient-reversal which results in halos when used for image enhance-
ment [2]. Farbman et al [2] tackled the gradient reversal problem by
solving a global optimization problem. He et al [4] proposed GIF,
a more efficient filter, by solving a local optimization problem but
the results still suffer from the halo artefacts [32]. Xu et al proposed
an L0 adaptation of the total variation filter [46], which produces
piece-wise constant results. Its performance was demonstrated on a
number of applications. Ham et al [47] proposed the static-dynamic
image filter which solves a global non-convex optimization problem
that involves two guidance images: the current estimate and an exter-
nal image. The authors have demonstrated its effectiveness at texture
removal and depth super-resolution. However, they noted that the
filter produces artefacts in flash/no-flash and RGB-NIR denoising
tasks.

2.6 Our contribution

The novel contributions of this work are as follows:

1. General framework for patch-based interpolation is presented,
along with algorithms for two special cases.
2. To further enhance the edge-preserving performance of the
proposed filter, two weighting functions, that boost or suppress
the penalty term based on the image content, are introduced and
compared.
3. A relationship between GAIF and GIF is highlighted where a
special case of GAIF is also a special case of GIF.

3 Guided Adaptive Interpolation Filter

3.1 Definition

Smoothing images can readily be achieved using any linear low-
pass filter such as the Gaussian filter. However, the resulting filtered
image is equally smoothed everywhere regardless of the image con-
tents. To rectify the lack of discriminating power in linear filters, we
propose a local, patch-level, interpolation model. This local inter-
polation is between the corresponding patches of two images. The
first image, denoted by I , is the raw image to be filtered. The sec-
ond is a smooth image, denoted by M , produced using any linear or
non-linear smoother applied on I as follows:

M = f(I) (5)

where f(.) is the smoother/filter of choice. More concretely, and
adopting the same notation as the GIF, Jpk is the output pixel at
location p due to the local model derived from the kth patch. We use
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J to denote the interpolation between I and its smooth version M in
the patch Ωk:

Jpk = αkIp + (1− αk)Mp ∀p ∈ Ωk (6)

where αk is an interpolation parameter and is assumed to be constant
in the patch Ωk, p is the index of pixels within the patch Ωk. Each
patch Ωk has |Ωk| pixels.The output patch Jpk in (6) is closer to Ip
if αk is higher than 0.5, and this should be the case if the patch k is
part of an edge. Alternatively, the output patch Jpk is closer to Mp

if αk is lower than 0.5, this should be the case if the patch k is not
part of an edge, i.e. smooth area. In other words, the images I and
M are responsible for the edges and the smooth areas in the image J
respectively.

p

p

p

Mk

Ik

Σ

α

1 − α

Jk

Fig. 1: GAIF block-diagram. Patches at index k in the images I and
M are interpolated to produce the corresponding patch in image J

To determine the interpolation coefficient αk, we seek a solution
to (6) by minimising the difference between the approximate image J
and the image to be filtered I . Concretely, we minimise the following
cost function for each patch k:

C(αk) =
∑
p∈Ωk

|αkIp + (1− αk)Mp − Ip|γ + εα2
k (7)

where ε is a regularization parameter stopping α from blowing up and
controlling the amount of emphasis placed on I and M . The param-
eter γ ∈ {1, 2} generalises two distinct models which, apparently,
have different solutions but are similar in performance. We will show
the reason behind that. The solutions of the model (7) are as follows:

• γ = 1

arg min
αk

C(αk) =
∑
p∈Ωk

|αkIp + (1− αk)Mp − Ip|+ εα2
k (8)

αk = min

(
1,
|Ωk|
2ε

MAEk

)
(9)

where |Ωk| is the number of pixels in the patch and

MAEk =
∑
p∈Ωk

|Ip −Mp|/|Ωk|

• γ = 2

arg min
αk

C(αk) =
∑
p∈Ωk

(αkIp + (1− αk)Mp − Ip)2 + εα2
k

(10)

αk =
MSEk

MSEk + ε̃k
(11)

where ε̃k = ε/|Ωk| and MSEk =
∑
p∈Ωk

(Ip −Mp)2/|Ωk|.

Just as is the case in GIF [4], the pixel at location p belongs to
|ωp| overlapping patches as shown in 2. Which means |ωp| output

patches Jpk are produced per pixel p. Following the model averaging
principle, we take the average of these outputs as the final output as
follows:

Jp =
1

|ωp|
∑
k∈ωp

Jpk (12)

= ᾱpIp + (1− ᾱp)Mp (13)

where ᾱp = 1
|ωp|

∑
k∈ωp

αk.

I5

I3I2I1

I4

I7 I8

I6

I9

Ip

Fig. 2: Overlapping patches

3.1.1 Analysis: The solutions in (9) and (11) are in terms of the
patch MAE and MSE, respectively which are defined earlier. The
square of MAE can be considered as an approximation of MSE. As
such, to simplify the following analysis we assume MSE ≈ MAE2.
With this assumption in mind, a one-to-one comparison is facilitated.
In Figure 3, we have started with a pair of |Ωk| and ε in equation (9)
then we found the best corresponding pair of |Ωk| and ε in equation
(11) such that the second function is closest to the first in the `2 sense.

This former parameter tuning allows us to highlight the difference
between the two cases when they are the closest to each other. Two
key observations here; (1) The two filters treat a patch Ωk of the input
image in a generally similar fashion. In other words, at the very low
and the very high values of MAE the two functions are equal. (2)
The two filters differ around the 2ε

|Ωk| point. Before this point, we see
higher α for the γ = 2 case signifying that the output patch gets a
higher contribution from the input image. After the 2ε

|Ωk| point, the
opposite occurs, the output patch gets a lower contribution from the
input image than in the γ = 1 case. Interestingly, the γ = 1 filter
produces α = 1 for MAE > 2ε

|Ωk|
However, experimentally we have found it very hard to visually

discern the differences between the two images resulting from the
two filters thus, from this point onward whenever we mention GAIF,
we are referring to the γ = 2 case.

Fig. 3: Comparison between the solutions in (9) and (11).
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3.2 Weighted adaptive interpolation filter

From the earlier discussion in 3.1, the proposed scheme produces
each output pixel by interpolating the patches centred around the
corresponding pixels in the two input images, see Figure 1. The
choice of which patch Ik orMk contributes more to the output pixel is
encoded as αk . In other words, both images I andM contribute to the
final GAIF filtering result J as can be seen in (6). More specifically,
strong edges are contributed by I while smooth areas are contributed
by M . This means, it is preferable to have αk ≈ 1 at the locations of
edges and αk ≈ 0 elsewhere.

The proposed model in (7), has a regularisation term that puts a cost
on choosing α = 1 which is what the solution would be without the
extra regularisation term. However, the impact of this regularisation
term is controlled by a single tuning parameter ε which is fixed for
the whole image.

This leads us to question the possibility of automatically adjusting
the tuning parameter ε such that the impact of the regularisation
parameter becomes negligible, allowing the model to pick αk ≈ 1 at
the edges, and amplify the impact of the regularisation parameter in
smooth areas to allow the solution to be αk ≈ 0

To this end, we propose the following model:

arg min
αk

C(αk) =
∑
p∈Ωk

(αkIp + (1− αk)Mp − Ip)2 + ε̃kα
2
k

(14)
where ε̃k = εθk which means that ε is tuned at the patch level rather
than globally as is the case in the initial model (7). Li et al [32]
proposed such formulation for the GIF. In this work, two variants of
θk are proposed as follows:

Define a re-scaling function

φ(x) = A− Ax

β + |x| (15)

Variant 1: θk = φ(η1 ∗ η2) (16)

where η1 =
1

N

∑
p∈Ωk

|Ip − µp|

and η2 =
1

N

∑
k∈ωp

1

η1 + c

Variant 2: θk = φ(σp(η1:5(I))) (17)

where ηi(I) = MEDFILT(I, 3 + 2(i− 1))

where MEDFILT represents a 2D median filter operation.
The parameters in equation (15) were found and set empirically to

A = 5 and β = 0.025 throughout this paper. The role of the rescaling
function in (15) is twofold, firstly; it flips the sign of its argument,
secondly; it makes the output saturate at 2A for negative inputs and
saturate at 0 for large positive inputs. In other words, the rescaling
function φ(.) makes sure that the value of θk is always positive and
bounded thus avoiding potential numerical issues. c in (16) is a small
constant∗. η1:5 in (17) means a stack of ηi : i ∈ {1..5}.

It is important here to note that these variants result in slightly
different smoothing effects and this can be clearly seen in Figure 4.

In variant 1, the pixels in a window are used in the computation of
θk which measures the relative mean absolute deviation of the central
pixel in a window to the mean absolute deviations of the surrounding
pixels followed by the re-scaling function φ(x) to bound the scaling
of αk within the range {0,5}.

In variant 2, the input image I is filtered with five median filters
of increasing windows sizes producing five different values for each
pixel, the standard deviation of the five samples is re-scaled with φ(x)
to produce the final scaling parameter θk.

∗c was fixed throughout this paper as c = 1× 10−6

Figures 4 5 illustrate the way ᾱp changes after adding the weighted
regularization across the image domain. Darker regions represent
areas where the filter leans towards the smooth version i.e more
emphasis on M , while light regions capture important edges where
the filter leans towards the original version i.e more emphasis on I .

(a) Original image I (b) Blurred image M

(c) Standard ᾱp (d) Standard GAIF result J

(e) Weighted ᾱp map (f) Weighted GAIF result J

Fig. 4: Variant 1 of weighted GAIF demonstration. (a) is input image
I . (b) is median filtered version of I with window size = 11. (c) and
(e) are ᾱp image in the case of standard GAIF (11) and variant 1
of the weighted GAIF (14) respectively. Light areas represent more
contribution from I than M and darker regions represent more con-
tribution from M than I . (d) and (f) are the results of GAIF and
weighted GAIF respectively with ε = 1.

(a) Original image I (b) Blurred image M

(c) Standard ᾱp (d) Standard GAIF result J

(e) Weighted ᾱp map (f) Weighted GAIF result J

Fig. 5: Variant 2 of weighted GAIF demonstration. (a) is input image
I . (b) is median filtered version of I with window size = 11. (c) and
(e) are ᾱp image in the case of standard GAIF (11) and variant 2
of the weighted GAIF (14) respectively. Light areas represent more
contribution from I than M and darker regions represent more con-
tribution from M than I . (d) and (f) are the results of GAIF and
weighted GAIF respectively with ε = 1.
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3.3 Filter kernel

GAIF is a local filter, in particular, the resulting image J is a linear
local combination of the input image I and a smoothed version of I
namely M as follows:

Jp = αkIp + (1− αk)Mp, ∀p ∈ Ωk (18)

which can be written as follows:

Jp =
∑
j∈Ωk

Wpj(I,M)Ij (19)

where the Wpj(I,M) is the filter kernel. The kernel depends on both
I and M . Generally, we filter I to produce M . One such case is
to filter I with a box filter to produce M , the GAIF filter kernel is
similar to the self-guided case of the GIF [4] which has following
explicit formula:

Wpj(I) =
1

|Ωk|2
∑
p∈Ωk

∑
j∈Ωk

(
1 +

(Ip − µk)(Ij − µk)

σ2
k + ε

)
(20)

Details can be found in Appendix 7

3.4 O(N) Time exact algorithm

A major advantage of the proposed filter over the global energy mini-
mization schemes is that it is an O(N) complexity exact algorithm.
O(N) means that the filter computational complexity depends lin-
early only on the number of pixels. In other words, it is independent
of the window size, which allows the user to choose any windows
size without additional computational cost as is the case with the
bilateral filter [1], non-local means [48], SD [47], RTV [39], and the
more recent filter by Wang el al [49] just to name few. This property
is shared with the guided image filter [4]. Table 1 provides a sum-
mary of the computational complexities of some of the well-known
techniques in the literature for comparison.

Table 1 Computational complexities of some of the well-known filters in the
literature. N is the total number of pixels in an image, |Ωk| is number of pixels
in the patch, w is the number of pixels in a window, and n is the number of
iterations.

Filter Complexity

Bilateral O(|Ωk|.N)
NLM O(|Ωk|.w.N)

SD O(n.|Ωk|.N) Assuming that the linear system can be
solved in O(N)

RTV O(n.|Ωk|.N)
GF O(N)

4 Parameters Setting and Details Smoothing

4.1 Parameter setting

GAIF has two parameters to tune; the radius r of a patch Ωk, which
is an odd integer and can take the values {3, 5, 7, etc}, the second
parameter being the regularization parameter ε. We have empirically
observed that increasing r results in better edge preservation. On the
other hand, increasing ε was found to result in increasingly smoother
images. Those observations can be verified in Figure 6.

The behaviour of GAIF at various values of ε and r can be
explained by referring to 3.3. For the special case where M is an
average filter, the relationship between the output pixels and the input
pixels is encoded in the explicit formula in (20). From (20), we notice
that; increasing ε results in an averaging effect while increasing r,
which increases the number of pixels in Ωk , increases the reliance on
the image I , hence more edges.

4.2 The role of M

The image M in (6) is responsible for the smoothing effect hence, it
is important to demonstrate the role it plays in the GAIF filtering. The
choice of f(.) in (5) can be considered as a tuning parameter with the
highest gains in smoothing performance achieved for non edge-aware
filters (f(.)). To this end, we compare the effect of using Gaussian
and Median filters to construct the image M on various images.
Figures 8,9,10,11,12,13,14,15 demonstrate the role of different M
images on the filtering outcome of the four images in 7.

4.3 Details smoothing

Figures 16 17 18 are comparisons between the smoothing results.
The top part merges two filtered version of the eye image, upper-
left is the eye smoothed using the named filter, lower-right is the
smoothed with GAIF. Here the GAIF smoothed image is a result
of filtering the original image, guided by the smoothed image using
the named filter. Filters used in the comparison include the classical
Gaussian and median filters, guided filter (GIF) [4], sub-window box
filter (SWF) [50], weighted least-squares (WLS) [2], static-dynamic
filter (SD) [47], rolling guidance filter (RGF) [51] and relative total
variation filter (RTV) [39]. In the close-up views, it is clear that
GAIF is better preserving the eyelashes in comparison with other
filters, meanwhile smoothing the other parts of the face. This result
demonstrates the efficiency of GAIF at improving on the smoothing
results of linear and non-linear filters. This improvement comes at a
minimal computational cost and no reformulation of these filters is
required.

5 Applications and Experimental Results

5.1 Single image haze removal

Tarel et al [52, 53] proposed a method for single image dehazing
which works in the four steps summarised in Figure 19 (black arrows
path). To improve on the results of this technique, a veil refinement
step is introduced which involves filtering the inferred veil image
using an edge-aware filter. We use GAIF to perform the veil refine-
ment step, more specifically, the image I is the inferred veil image
while the image M is a mean or median filtered version of I . The
authors in [52, 53] have considered both median and bilateral fil-
ters for veil refinement. Figures 20 and 21 are comparisons between
three state-of-the-art techniques, including the techniques proposed in
[52, 53], dark channel prior [24] and our technique. The top parts of
the figures are the results of various techniques and the bottom parts
are close-up views of two regions of the images. GAIF is resulting in
the clearest and sharpest result among the four techniques.

Atmospheric 

Veil 

Inference

Visibility 

Restoration

Local 

Smoothing 

Tone 

Mapping

Veil 

Refinement

Fig. 19: Single image de-hazing steps proposed in [52]. The black
arrows refer to the original model and the red path includes the GAIF
as the veil refinement step.

5.2 Flash/No flash fusion denoising

Denoising an image taken without flash by utilizing another version
of the same image with flash is a common digital photography prob-
lem [31]. In Figure 23, we compare three representative filters namely;
guided filter (GIF) [4], joint bilateral filter (JBF) [31] and semi-guided
bilateral filter (SGBF) [54]. GAIF is used in this application as a
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Original image Gaussian filtered with w = 11 and σ = 5

ε = 0.1 ε = 0.5 ε = 1

r = 3

r = 7

r = 11

Fig. 6: Edge-preserving smoothing using GAIF filter with different kernel sizes r and values of the regularization parameter ε. Lower ε values
correspond to sharper outputs. Larger patch radius r results in better edge preservation.
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Fig. 7: Input images used to demonstrate the role of the smooth
image M .

Fig. 8: The role of the smooth image M . (a) and (c) are M images
produced using a Gaussian filter with σ = 2 and σ = 7 respectively.
(b) and (d) are GAIF filtered images with I being the original image
in 7 (a) while M being the image (a) and (c) respectively.

replacement to the bilateral filter in the scheme proposed in [31].
More specifically, GAIF is used to filter both images the flash and
no-flash where I is the image to be filtered and M = H ∗ I where
H is a linear average filter as shown in Figure 22. In Figure 23, not
only did GAIF denoise the no-flash image, but it also filled the dark
regions between the jugs with details from the flash image producing
a significantly better result than JBF and GIF. However, comparable
results to SGBF, but slightly sharper, especially the drawings on the
jugs.

Fig. 9: The role of the smooth image M . (a) and (c) are M images
produced using a Median filter with window size 9 and 21 respec-
tively. (b) and (d) are GAIF filtered images with I being the original
image in 7 (a) while M being the image (a) and (c) respectively.

Fig. 10: The role of the smooth image M . (a) and (c) are M images
produced using a Gaussian filter with σ = 2 and σ = 7 respectively.
(b) and (d) are GAIF filtered images with I being the original image
in 7 (b) while M being the image (a) and (c) respectively.

5.3 Image detail enhancement

Enhancing the details of an image starts with decomposing the image
into base and details layers followed by details amplification. To
avoid halo artifacts, edge-aware filters are used to produce the base
layer as follows:

J = GAIF(I,M) + γ(I −GAIF(I,M)) (21)
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Fig. 11: The role of the smooth image M . (a) and (c) are M images
produced using a Median filter with window size 9 and 21 respec-
tively. (b) and (d) are GAIF filtered images with I being the original
image in 7 (b) while M being the image (a) and (c) respectively.

Fig. 12: The role of the smooth image M . (a) and (c) are M images
produced using a Gaussian filter with σ = 2 and σ = 7 respectively.
(b) and (d) are GAIF filtered images with I being the original image
in 7 (c) while M being the image (a) and (c) respectively.

where γ is a magnification factor used to amplify the details, and
M is median filtered version of I . Figures 25 and 26 compare the
performance of GAIF to two representative techniques; weighted
least-squares (WLS) [2] and semi-guided filter [54]. We observe that
the proposed filter preserves the original edges intact, in other words,
the filtered image has the edges of the input image as can be seen in
Figure 25.

Fig. 13: The role of the smooth image M . (a) and (c) are M images
produced using a Median filter with window size 5 and 13 respec-
tively. (b) and (d) are GAIF filtered images with I being the original
image in 7 (c) while M being the image (a) and (c) respectively.

Fig. 14: The role of the smooth image M . (a) and (c) are M images
produced using a Gaussian filter with σ = 2 and σ = 7 respectively.
(b) and (d) are GAIF filtered images with I being the original image
in 7 (d) while M being the image (a) and (c) respectively.

5.4 Edge detection

Another application of edge-aware filters is edge-detection. Images
are preprocessed using edge-aware filtering followed by an edge-
detection algorithm. To demonstrate the potential of GAIF at improv-
ing edge-detection, in Figure 27, we conducted an experiment on a
synthetically generated image with known edges then we added noise
to it. To detect the edges of the noisy image, we preprocessed it with
GAIF followed by edge-detection. We used the "edge" command
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Fig. 15: The role of the smooth image M . (a) and (c) are M images
produced using a Median filter with window size 9 and 21 respec-
tively. (b) and (d) are GAIF filtered images with I being the original
image in 7 (d) while M being the image (a) and (c) respectively.

in MATLAB for edge detection which is an implementation of the
Canny edge-detection algorithm.

6 Discussion and Conclusion

In this paper, a novel filtering technique is presented with a number of
applications in image processing and computer vision. GAIF achieves
edge-preservation by interpolating between two patches. As a result,
the filter can improve the results of linear and non-linear filters.

GAIF is a computationally efficient edge-preserving filter with a
computational complexity of O(N) where N is the number of pixels
in the image. We have demonstrated the efficiency of GAIF on a
number of problems including single image haze-removal, flash/no-
flash image fusion, image detail enhancement and edge detection.

Finally, we note that GAIF models the image as an interpolation
at the patch level between the input image and a smoothed version
of which. This means that; the filter is constructed with two images,
I and M , produced using the same type of sensor in mind. Hence,
it’s not straight forward to utilize the filter for tasks that require cross-
domain fusion such as matting/feathering [55] and super-resolution. It
is our future plan to adapt GAIF to more applications including multi-
sensor fusion, image vectorisation, colourisation, non photo-realistic
rendering and low-light image enhancement.
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7 Explicit kernel proof

In the special case of M is a box filter (linear), GAIF is equivalent to
the self-guided GIF. Specifically, the model of the self-guided GIF is:

arg min
ak,bk

C(ak, bk) =
∑
p∈Ωk

(akIp + bk − Ip)2 + εa2
k (22)

optimizing for bk results in the following:

bk = µk − akµk = (1− αk)µk (23)

where

µk =
1

|Ωk|
∑
p∈Ωk

Ip

substituting bk in the GIF model yields:

arg min
ak,bk

C(ak) =
∑
p∈Ωk

(akIp + (1− αk)µk − Ip)2 + εa2
k (24)

Equation (24) is equivalent to GAIF with M = µk.
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(a) Original (b) Gaussian (c) Median

Fig. 16: Image smoothing (b) Gaussian σ = 6, (c) median 5× 5 and GAIF ε = 0.04 for all cases. The top part compares two results, to the left
is a result of the indicated filter, to the right is a result of filtering with GAIF. The bottom part is zoomed-in versions of the top part, the red box is
for the result of the indicated filter and the blue box is for the GAIF result.

(a) GIF (b) SWF (c) WLS

Fig. 17: Image smoothing (a) GIF r = 5, ε = 0.01, (b) SWF r = 5, (c) WLS λ = 0.05, α = 1 and GAIF ε = 0.04 for all cases. The top part
compares two results, to the left is a result of the indicated filter, to the right is a result of filtering with GAIF. The bottom part is zoomed-in
versions of the top part, the red box is for the result of the indicated filter and the blue box is for the GAIF result.

(a) SD (b) RGF (c) RTV

Fig. 18: Image smoothing (a) SD λ = 5, µ = 50, ν = 400, iter = 10, (b) RG σs = 3, σr = 0.01, iter = 4, (c) RTV λ = 0.005, σ = 3 and
GAIF ε = 0.04 for all cases. The top part compares two results, to the left is a result of the indicated filter, to the right is a result of filtering with
GAIF. The bottom part is zoomed-in versions of the top part, the red box is for the result of the indicated filter and the blue box is for the GAIF
result.
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(a) Original (b) NBPC (c) NBPC+PA

(d) Dark prior channel (e) Proposed

Fig. 20: A comparison of image haze removal on road image. GAIF is used to filter the atmospheric veil estimate in the no-black pixel constraint
(NBPC) technique [52]. In comparison, dehazing using the original NBPC[52], NBPC+PA [53] and dark prior channel [24] techniques are
evaluated.

(a) Original (b) NBPC (c) NBPC+PA

(d) Dark prior channel (e) Proposed

Fig. 21: A comparison of image haze removal on city image. GAIF is used to filter the atmospheric veil estimate in the no-black pixel constraint
(NBPC) technique [52]. In comparison, dehazing using the original NBPC[52], NBPC+PA [53] and dark prior channel [24] techniques are
evaluated.
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Fig. 22: Flash/No flash denoising algorithm.

(a) Flash image (b) No-flash image

(c) JBF [31] (d) GIF [4]

(e) SGBF [54] (f) Proposed

Fig. 23: A comparison of image flash/no-flash denoising
between GAIF with (Fbase : M = boxfilter(I, w = 50),Ωk =
3, ε = 1, ANR : M = boxfilter(I, w = 50),Ωk = 5, ε = 20), the
joint bilateral filter [31], guided image filter [4] with (r = 9, ε =
0.0004) and Semi-guided filter [54] with (Fbase : σs = 8.5, σr =
0.5, N = 5, ANR : σs = 8.5, σr = 0.35, N = 5). The proposed fil-
ter is superior to the first two and is on par with (e) but at less
computational complexity. In (f) GAIF manages to capture all the
important details as annotated.
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(a) Flash image (b) No-flash image

(c) JBF [31] (d) GIF [4]

(e) SGBF [54] (f) Proposed

Fig. 24: A comparison of image flash/no-flash denoising
between GAIF with (Fbase : M = boxfilter(I, w = 50),Ωk =
3, ε = 1, ANR : M = boxfilter(I, w = 50),Ωk = 5, ε = 20), the
joint bilateral filter [31], guided image filter [4] with (r = 9, ε =
0.0004) and Semi-guided filter [54] with (Fbase : σs = 8.5, σr =
0.5, N = 5, ANR : σs = 8.5, σr = 0.35, N = 5). The proposed fil-
ter is superior to the first two and is on par with (e) but at less
computational complexity. In (f) GAIF manages to capture all the
important details as annotated.

(a) Original image (b) WLS filter [2]

(c) Semi-GF [54] (d) Proposed

Fig. 25: A comparison of Image details enhancement perfor-
mance between GAIF (M = MEDFILT(I, w = 13),Ωk = 3, ε =
0.1), weighted least-squares filter [2] (λ = 0.125, α = 1.2) and the
semi-guided filter [54] (σs = 3.5, σr = 0.05, N = 5). As annotated,
the proposed filter excels at preserving the true edges of the input
image while achieving comparable smoothing performance in other
regions.

(a) Original image (b) WLS filter [2]

(c) Semi-GF [54] (d) Proposed

Fig. 26: A comparison of Image details enhancement perfor-
mance between GAIF (M = MEDFILT(I, w = 13),Ωk = 3, ε =
0.00001), weighted least-squares filter [2] (λ = 0.125, α = 1.12)
and the semi-guided filter [54] (σs = 3.5, σr = 0.05, N = 5).
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Fig. 27: Edge detection by preprocessing image using GAIF. (a) is input image, (b) is the edge map of the input image, (c) is the input image
plus a gaussian noise with µ = 0.5 and σ2 = 0.05, (d) is the edge map of the image in (c), (e) is average filtered version of the image in (c) with
window size 9, (f) edge map of the image in (e), (g) is GAIF filtered image with I is the image in (c) and M is the image in (e), finally (h) is the
edge map of the image in (g).
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