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 In this research, the time series were analysed for four gauges (Mosul, Baghdad, Kut, and 

Husayabah) using autoregressive (AR) models with constant and periodic autoregressive 

coefficients. It was found that the best model for Mosul, Baghdad, and Husaybah gauges 

is AR (2) with periodic autoregressive coefficients, while the best model for the Kut gauge 

was AR (2) with constant autoregressive coefficients. The test was also suggested to 

determine the most appropriate model based on the values of autocorrelation of residuals 

(independent normal variable) and it was compared with the drawings of correlograms of 

autocorrelation of residuals rk(ξ) and with two tests: the AIC test and the portmanteau lack 

test. It was concluded that the suggested test was more accurate and more reliable. 
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1. INTRODUCTION 

 

In hydrology, the time series analysis becomes a major tool. 

It is using for building mathematical models to generate 

synthetic hydrologic records to forecast the hydrologic events 

and to fill in missing data with extend records [1]. The 

hydrologic processes such as runoff and rainfall evolve on a 

continues time scale in which recording gauging station in a 

river provides a continuous record of water discharge through 

time. Time series forecasting comes when making scientific 

predictions based on the historical time of data, which involves 

building models through a historical analysis and using them 

for making observations and driving future strategic decision-

making [2]. 

In forecasting, an important distinction is that at the time of 

the work, the future outcome is completely unavailable and 

can be estimated through a careful analysis with evidence-

based priors [3]. Application of statistical hydrology in the 

past few days was restricted to problems of surface water, 

especially in the case of analysing hydrologic extremes such 

as floods, droughts, etc. In addition, during the past three 

decades, in hydrology, the statistical domain has broadened 

with the advent of computing technology to encompass the 

problems in each surface water and groundwater system. 

Statistics have been found to be a powerful tool for analysing 

hydrologic time series [4]. The main aim of time series 

analysis is to describe and detect quantitatively each of the 

generating processes underlying the given sequence of 

observations. In hydrology, the analysis of time series is used 

to construct mathematical models to generate records of 

synthetic hydrologic events, to forecast hydrologic events, to 

find trends and shifts in hydrologic records, and to fill in 

missing data and extend records [5]. 

The main aim of time series analysis is to describe and 

detect quantitatively each of the generating processes 

underlying the given sequence of observations. In hydrology, 

the analysis of time series is used to construct mathematical 

models to generate records of synthetic hydrologic events, to 

forecast hydrologic events, to find trends and shifts in 

hydrologic records, and to fill in missing data and extend 

records [6]. 

The measurement of surface water flow is a very important 

aspect in hydrology-related projects such as forecasting, the 

monitoring of water quality and flood studies, geomorphology, 

and aquatic life support, amongst others [7]. It is the most 

common requirement for management and planning of any 

project in water resources [8]. Availability of long-term 

streamflow data covering many years is required for the 

appropriate hydrological studies [9]. Most hydrological data, 

such as rainfall and water discharge, are subject to a certain 

degree of randomness. Since simulation and improvement of 

any water resource system requires specifying data in order to 

complete the process of designing or simulating a particular 

hydraulic facility, this requires the generation of future data, 

and this generated data depends on the analysis of historical 

time series, which led to the emergence of many models in 

order to generate forecast time series [10]. These models were 

required in order to generate expenditures for the purpose of 

designing a particular dam, planning to manage dam reservoirs, 

designing a specific bridge and other hydraulic installations 

[11], or developing a strategic plan for the purpose of 

managing the water resources of a particular country in the 

future. Hence the importance of generating data in the 

planning and operation of water resource systems or the design 

of a hydraulic plant. 

The other aspect, which is included in the importance of 

generation, is finding reliability as well as determining the 

amount of risk for any hydraulic facility in dams. For example, 

as a future strategic plan, determining the number of expenses 

and comparing them to the needs of a specific country requires 

determining the degree of risk in the future. One of the well-

known and used models is AR1, AR2, which will be the 
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subject of this study in the country of Iraq. 

Therefore, the study employs AR (1) and AR (2) with the 

two cases of constant coefficient and periodic coefficient to 

analyse data for stations (Mosul, Baghdad, and Kut located on 

the Tigris River and Husaybah located on the Euphrates River) 

in order to generate data for future years and determine the 

appropriate model for each measuring station by using. The 

main objective of this study is also to propose a new statistical 

test model that elicits the number of correlation functions for 

residual points that fall outside the confidence limit. 

 

 

2. MATERIAL AND METHODS 
 

2.1 Study area 
 

The study area (area of data collection) is located at the 

water discharge measuring stations located on the Tigris River 

in the cities of Mosul, Baghdad, and Kut, as well as located on 

the Euphrates River in the city of Husayabah in western Iraq, 

as shown on the map in Table 1 and Figure 1. 

 

Table 1. Location of discharge measuring stations 

 
Stream Gage Location 

Mosul Latitude 36° 37′ 57″ N, Longitude 42° 49′ 03″ E. 

Baghdad 33° 24′ 34″ N, Longitude 44° 20′ 32″ E 

Kut Barrage Latitude 32° 29′ 00″ N, Longitude 45° 50′ 00″ E 

Husabah Latitude 34° 25′ 20″ N, Longitude 41° 00′ 38″ E 

 

 
 

Figure 1. Area of case study (Discharge measuring stations) 

 

2.2 Time series modeling 

 

Homogeny time series transform to normal distribution (Yt) 

is required for stability the variance and improving the 

normality assumption of the noise series [12]. 

 

𝑌 𝑣, 𝜏 =  𝑔𝜏(𝑋𝑣, 𝜏) (1) 

 

where: gτ is the transformation function used to transform it to 

normal, and then the inverse transformation of Yt will used to 

get the generated non-normal series Xt.  

 

𝑋𝑣, 𝜏 =  𝑔 − 1(𝑌 𝑣, 𝜏) (2) 

 

where: g-1(Yv,τ) is the invers transformation function. There 

are many methods to transformed data to normal, one of these 

is the original form of Box-Cox transformation [13]. 
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in which, value of λ assume from ( -1 to +1, step 0.1) to find 

optimum λ, it should find the relationship between skewness 

(cs) and λ with assumption relationship is polynomial second 

order as shown below: 

 

𝜆 =  𝑎0  +  𝑎1𝑐𝑠  +  𝑎2𝑐𝑠
2 (4) 

 

So, the optimum λ where cs = 0, then λ = a0. To find (a0, a1, 

a2), it was using polynomial regression between λi and csi by 

solving these matrices: 
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 (5) 

 

2.3 AR models 

 

Autoregressive (AR) models, one of the most important 

methods in which used for forecasting especially in hydrology 

and water resources so as to discharge forecasting. It will 

review the periodic AR models that are modeled with constant 

coefficients or modeled with periodic coefficients. The 

periodic normal series (Y v,τ) can be written as [12]: 

 

𝑌 𝑣, 𝜏 =  µ𝜏 +  𝜎𝜏 𝑍 𝑣, 𝜏 (6) 

 

where: Y v,τ = gτ (Xv,τ), µτ and  στ are the periodic mean and 

periodic standard deviation, and (Z v,τ) is the time dependent 

series with mean zero and variance one. 

 

2.3.1 AR models with constant autoregressive coefficient 

The time dependent (Zv,τ) represented by AR models with 

constant autoregressive coefficient. For AR (1) model [12]: 

 

𝑍𝑡   =  𝛷1 𝑍𝑡−1 + 𝜀𝑡 (7) 

 

For AR (2) model: 

 

𝑍𝑡   =  𝛷1 𝑍𝑡−1 +𝛷2 𝑍𝑡−2 + 𝜀𝑡 (8) 

 

In general, the AR(P) model: 

 

𝑍𝑡   =  𝛷1 𝑍𝑡−1 +⋯      𝛷𝑃 𝑍𝑡−𝑃 + 𝜀𝑡 (9) 

 

where: 

t = (v -1) w + τ 

v = no. of years; τ= 1,2, 3…., w; w = number of time interval 

in years (w = 12 month); ΦP = the i th partial autocorrelation 

coefficients; εt = the residual or error (assumed normal with 

mean zero and variance σ2
ε) or (the normal independent 

variable (white noise) with standard deviation σε). Since (εt = 

σε 
2. ξ) in which ξ is an independent normal variable with zero 

mean and variance one [12]. 

 

For AR (1): 

 

𝜎𝜀
2 =

𝑁. 𝜎2

(𝑁 − 1)
{1 − ∅1

2} (10) 
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2.3.2 AR models with periodic autoregressive coefficient 

The time dependent (Zv,τ) represented by AR models with 

periodic autoregressive coefficients [12]. 

 

For AR (1) model: 

 

𝑍𝑣,𝜏 = 𝛷1,𝜏 𝑍𝑣,𝜏−1   +   𝜎𝜀,𝜏 𝜉𝑣,𝜏 (15) 

 

For AR (2) model: 

 

𝑍𝑣,𝜏   =  𝛷1,𝜏 𝑍𝑣,𝜏−1  +  𝛷2,𝜏  𝑍𝑣,𝜏−2  +   𝜎𝜀,𝜏 𝜉𝑣,𝜏 (16) 

 

In general, the AR(P) model as the form: 

 

𝑍𝑣,𝜏   =  𝛷1,𝜏 𝑍𝑣,𝜏−1  + ⋯   𝛷𝑃,𝜏  𝑍𝑣,𝜏−𝑃  +   𝜎𝜀,𝜏 𝜉𝑣,𝜏 (17) 

 

where, the (𝛷𝑗, τ 's) are the periodic autoregressive coefficient 

and 𝜎𝜀 periodic variance of the residuals. 

 

For AR (1): 

Φ1, τ= ρ 1, τ; τ = 1, 2…,12; ρ1, τ = periodic correlation 

coefficients. 

 

For AR (2): 
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where, τ = 1, 2…,12 

The periodic variance of the residual for AR (1) and AR (2) 

can be written as in equations (20) and (21) respectively [12]:  

 

   ,1.,112 −=
 

(20) 

 

    ,2.2,1.,112 −−=
 

(21) 

 

 

3. RESEARCH PROCESS 
 

3.1 Data collection 
 

Series of water discharge data were collected for Tigris 

River at stream gage stations in the cities of Mosul, Baghdad, 

and Kut, and for Euphrates River at stream gage stations in the 

city of Husaybah [11]. These data were presented in the form 

of graphs, as shown in Figure 2. The data in Figure 2 included 

the monthly water discharge recorded for the Tigris River at 

the (Mosul station which available for 35 years, Baghdad 

station for 12 years, Kut station for 12 years and for the 

Euphrates River at Husaybah station for 12 years). 

 

 
 

Figure 2. The original historical data for (Tigris - Euphrates) 

rivers at Four Stream Gage Stations 

 

3.2 Data generation 

 

In this study, the generation of data by using AR (1) and AR 

(2) models with both constant-coefficient and periodic 

coefficients. The procedure to solve these models can be 

written by the following steps: 

 

(1) Test of none homogeneity data such as existence the 

trend and removing it that done using t-test by dividing that 

data into two sub-sample is given [14].  
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(23) 

 

where:  

�̄�1, �̄�2: mean sample 1 and 2 respectively; n1, n2: number of 

data for sample 1 and sample 2; xi, xj: values of data for sample 

1 and sample 2; t: is t – calculated. The t – calculated is 

compare with t – table with α = 0.97 S and degree of freedom 

= N-2 to decide the significant of existence the trend, and if it 

exist should be remove. 

 

(2)  Normality of data: it is included test the data of 

normality by compute skews (Cs), if Cs closed to zero, it can 

be decided that data are normal, if it is not, it should be 

transforming the data to normality using Eq. (3). 

(3) Analysis of periodicity by using Harmonic analysis 

that including fitting by Fourier series, it will be estimated 

mean µτ and standard deviation στ as follow [12]: 
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where: τ= 1, 2…, w; αj, βj   = Fourier series coeff.; j = the 

harmonic; h = total number of harmonic which is equal w / 2. 
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And αh = 0; computing µτ and στ with only those harmonics 

which are significant according to variance analysis and F- test 

doing. When sure existing the periodicity, it should be 

removed it [12]. 
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(28) 

 

yyv,τ: data after transforming to normal; εv,τ: data after 

removing the periodicity. Then, ensure that the mean = 0 and 

σ = 1, if not it should be standardized. 

 

(4) Compute autocorrelation for residual (εv,τ) from lag = 

1 to lag= (N  /   4) ,then drawing between autocorrelation and 

lags.   

(5) Compute Φ1 and Φ2 partial autocorrelation function 

for the residual (εv,τ) for all data in case of constant coeff. and 

for each month in case of periodic coeff. 

(6) Compute σ2
ε and σ2

ε τ for AR (1) and AR (2) models 

and with both constant and periodic coeff. respectively. 

(7) Compute ξt when use AR(P) models with constant 

autoregressive coeff. and ξv,τ when use AR models with 

periodic coeff. and calculate autocorrelation for ξ to drawing 

the Auto correlogram with confidence limits. 

 

𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 𝑙𝑖𝑚𝑖𝑡𝑠 =
−1 ∓ 1.96√𝑁 − 𝐾 − 1

√𝑁 − 𝐾
 (29) 

 

(8) Generate standard normal random number using 

“The Box Muller’s “algorithm [12]. 

(9) From Eq. (9) and Eq. (17), compute zt and zv,τ  with 

using constant or periodic coeff. for each model AR (1) And 

AR (2). 

(10) From Eq. (6), it will find Yt and Yv,τ with using 

constant or periodic coeff. for each model AR (1) And AR (2). 

(11) Invers (Y v, τ) using Eq. (2), then finally find the 

generated data Xt or Xv,τ according to the type of model. 

 

3.3 Statistical methods for choosing suitable model 

 

There are many methods which give an impression to 

decide to choose fit a model or suitable model. 

 

3.3.1 Akaike information criterion 

The Akaike information criterion (AIC) is defined as [14]: 

 

AIC(p, q)  =  N. ln(σε2)  +  2 ( p + q) (30) 

 

where: σε
2 = variance of the residual series with N number of 

data.   

For AR (1), P = 1; q = 0; So, AIC (1,0) = N.ln(σε
2) + 2 

For AR (2), P = 2; q = 0; So, AIC (2,0) = N.ln(σε
2) + 4 

The minimum value of AIC gives a better model. 

 

3.3.2 Port Manteau lack of fit test   

Test depending upon values of the autocorrelation 

coefficients of the residual rk(ξ) at lag k. The Q – Statistic 

defined as [15]. 
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=
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KrNQ
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(31) 

 

where: rk(ξ) is the autocorrelation coefficients of the residual 

(ξ) at lag k; (M) is max. lag consider (N / 4). The model is 

accepted if the Q- calculated less than χ2 table with degree of 

freedom = m – p, and confidence limit = 95%. 

 

3.3.3 New test 

There are many conditions where the New Suggestion Test 

is dependent upon choosing the better model, which depends 

on the value of the autocorrelation coefficient of the residual 

rk(ξ) of lag k. Regarding the value of rk (ξ) it may be negative, 

positive, or zero value and be bound by upper and lower limits. 

Firstly, assuming the limits (upper or lower) are closed to rk 

(ξ) value, which is done according to the following conditions: 

If rk ≤ is zero, the absolute of rk(ξ) is subtracted from the 

absolute of the lower limit; if rk > is greater than zero, the 

absolute of rk(ξ) is subtracted from the absolute of the upper 

limit. 

In fact, in a process where the distance between rk (ξ) values 

and the limits is found, the products of these differences will 

be either negative or positive values. Negative values indicate 

that values are within the limits, but if values were positive, 

that indicates that values are outside the limits. To make this 

conclusion more practical, any negative values should be 

converted into mathematical equations whose result is zero 

(which means that the value is within limits). Regarding 

positive values, they should be converted into mathematical 

equations whose result is one (which means that the value is 

outside limits). 

It was done by dividing these values (-or +) by the absolute 

value of the same value and adding (1). Finally, if you take the 

square root of the values, the result will be either zero or one. 

When summation for these was done, the result gave a number 

of rk (ξ) that was outside the limits. hoods, which give an 

impression of deciding to choose a model or suitable model. 

 

{
 
 
 

 
 
 
𝑖𝑓 𝑠𝑖𝑛𝑔 𝑟𝑘(𝜁) <= 0  𝑛′𝑜𝑢𝑡1 =∑

1

2
(
𝐶𝑘
|𝐶𝑘|

+ 1)

𝑁 4⁄

1

𝑖𝑓 𝑠𝑖𝑔𝑛 𝑟𝑘(𝜁) >  0  𝑛′𝑜𝑢𝑡2 =∑
1

2
(
𝐷𝑘
|𝐷𝑘|

+ 1)

𝑁 4⁄

1

 (32) 

 

𝑁′𝑜𝑢𝑡 = 𝑛′ 𝑜𝑢𝑡1 + 𝑛′ 𝑜𝑢𝑡2 (33) 

 

where: 

 

𝐶𝑘 = |𝑟𝑘(𝜁)| − |
−1 − 1.96√𝑁 − 𝑘 − 1

√𝑁 − 𝑘
| (34) 

 

𝐷𝑘 = |𝑟𝑘(𝜁)| − |
−1 + 1.96√𝑁 − 𝑘 − 1

√𝑁 − 𝑘
| (35) 

 

where, k=1,2,3, ... N/4. 
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𝐴𝐶% = (1 −
𝑁′𝑜𝑢𝑡
𝑁

4

) ∗ 100   (36) 

 

For more accurate calculation, the accepted AC% is equal 

or greater than 95%. The decision for the better model was 

made when the number of rk (ξ) values outside the limits was 

the least. However, the percentage of the number of rk (ξ) must 

be greater or equal to 95% to indicate the better model. It also 

depends on the experience of the analyst. 

 

 

4. RESULTS AND DISCUSSION 

 

4.1 Results of data generation 

 

To generate the monthly flow discharge, a computer 

programme was written, using the available data for the 

gauges (Mosul, Baghdad, Kut, and Husaybah). The purpose is 

to generate a sample of 50 years using the AR (1) and AR (2) 

models and with two cases of a constant autoregressive 

coefficient and a periodic autoregressive coefficient for each 

model, and for the four gages. The programme is written in the 

form of a subroutine. The first subroutine includes a test of the 

homogeneity of the data. It includes checking the trend 

existing by using t-test Eq. (23) and t-table with a significant 

level of 0.975 and degree of freedom equal to (n-2) for the four 

gauges is 1.96, and comparing it with the t-calculated. It was 

found no trend exists for the four gauges because the t-

calculated is less than the t-table, so there is no need to remove 

the trend and the data is homogeneous for all gages.  

The second subroutine consisted of the test of normality of 

data. It was found the skewness (cs) for all gauges was greater 

than zero as shown in Table 2. Therefore, there was a need to 

transform the data using Eq. (3) to evaluate the optimum (λ) 

after finding the coefficients of the second-order polynomial 

equation for all gauges through Eq. (4) and Eq. (5). The 

optimum (λ) for the gauges is illustrated in the Table 2. 

 

Table 2. Skewness and optimum (λ) for all gauges 

 
Gauge Mosul Baghdad Kut Husaybah 

Skewness 1.64 2.13 1.33 2.09 

Optimum (λ) -0.142 -0.691 -0.263 -0.241 

 

The third subroutine of the program, the periodicity, was 

analysed for six harmonics to determine µτ and στ using Eq. 

(24) to Eq. (27), using the variance analysis and F-test to 

indicate whether the periodicity exists or not. If the periodicity 

exists, we will find it µτ and στ, after specifying the harmonic 

number that is significant through explaining percent, we will 

remove the periodicity Eq. (28).  

The test mean and standard deviation of the results should 

be zero and one, respectively, or they will be standardized. The 

result is (ε), which is the residuals after removing the 

periodicity and standardizing. From variance analysis, it was 

found that the periodicity existed for all gauges except 

Baghdad gauge, which didn’t have periodicity, and according 

to explain percent, it was found that the number of harmonics 

significant was 1,2,5, and 4. For example, the harmonics 

significant were 1,2,4, and 3. In Table 3 are also shown Fourier 

coefficients of fitted harmonics to means and standard 

deviations. 

Finding the autocorrelation for the residual (ε). This was 

done in the fourth subroutine of the program, from lag equal 

one to lag (n/4). Figure 3 illustrates the relationship between 

lags and rk (ε). 

 

 
 

Figure 3. Relationship between rk (ε) l and lags 

 

From Eq. (11) and Eq. (13) it was determined the partial 

autocorrelation function for AR (1) and AR (2) models as 

constant. The results are shown in Table 4 for all gauges. 

The fifth subroutine of the program, including the 

calculation of the periodic autocorrelation function with lag 1 

and lag 2 for all gages, is illustrated in Table 5, which leads to 

the computation of the partial autocorrelation function for AR 

(1) and AR (2) models as periodic Ф. The results are shown in 

Table 6.

 

Table 3. Test periodicity, no. of harmonics, and Fourier coefficients for means and standard deviations 

 

Gauges Test exist the periodicity 
Mean Standard deviation 

Harmonic αi βi Harmonic αi βi 

Mosul exist 

1 0.448 -0.15 1 0 0.038 

2 -0.082 0.065 2 0.004 0.018 

3 0.016 0.007 3 -0.003 -0.006 

4 -0.004 -0.008 4 0.003 -0.002 

Baghdad Not exist _ _ _ _ _ _ 

Kut exist 

1 0.026 0.016 1 0.014 0.008 

2 -0.007 0.01 2 0.002 0.013 

5 0.003 -0.003 5 0.003 0.001 

4 -0.002 -0.003 4 0.003 -0.002 

Husayabh exist 

1 0.024 -0.014 1 -0.006 -0.02 

2 -0.007 -0.017 2 0.004 0.001 

4 -0.004 0.009 4 0 0.003 

3 0.006 -0.001 3 -0.003 0.007 
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Table 4. Constant Ф1 for AR (1), constant Ф1 and Ф2 for 

AR (2) 

 
 Gauges Model Partial autocorrelation function 

C
o
n

st
a
n

t 
Ф

 

Mosul 

AR (1) Ф1 0.614 

AR (2) 
Ф1 0.531 

Ф2 0.134 

Baghdad 

AR (1) Ф1 0.722 

AR (2) 
Ф1 0.778 

Ф2 -0.0785 

Kut 

AR (1) Ф1 0.894 

AR (2) 
Ф1 0.904 

Ф2 -0.0121 

Husaybah 

AR (1) Ф1 0.882 

AR (2) 
Ф1 0.744 

Ф2 0.156 

 

In Tables 7 and Table 8 it was calculated the variance (σε 2) 

of dependent stochastic component using AR (1) and AR (2) 

as constant Ф by Eq. (10) and Eq. (12), regarding periodic Ф 

the calculation of (σε 2) was used Eq. (20) and Eq. (21), this is 

done in sixth subroutine of the program. 

In subroutine seventh through a tenth of the program and 

from Eq. (9). It was computed (ε) for AR (1) and AR (2) 

models with constant Ф, and periodic Ф has used Eq. (17).  

Using 600 standard normal random number for generating 

50 years with eliminating 5 years data to avoid an error that 

produce due to an assumption of initial (z). It is done by Eq. 

(9) and Eq. (17) with substituting (εt = σε2. ξ) and (εt τ = σε τ 

2. ξv,τ) respectively. Figure 4 to Figure 7 represented the data 

generated for all gages and for AR (1) and AR (2) models with 

constant Ф and periodic Ф. Discharges were generated for 

Mosul gage up to the year 2042, for Baghdad gage up to the 

year 2036, for Kut gage up to the year 2047, and Husaybah 

gauge up to the year 2038. 

 
 

Figure 4. Data generation for Mosul gauge 

 

 
 

Figure 5. Data generation for Baghdad gauge 

 

Table 5. Periodic autocorrelation function 

 

Gages 

Periodic 

autocorrelation 

function (lag 1 and 

lag2) 

Month 

1 2 3 4 5 6 7 8 9 10 11 12 

Mosul 
r1 0.379 0.538 0.542 0.552 0.761 0.878 0.968 0.949 0.956 0.227 0.347 0.536 

r2 0.335 0.503 0.330 0.587 0.520 0.747 0.875 0.885 0.893 0.131 0.145 0.218 

Baghdad 
r1 0.488 0.662 0.836 0.779 0.974 0.868 0.792 0.948 0.979 0.124 0.635 0.847 

r2 0.481 0.364 0.669 0.457 0.757 0.819 0.531 0.648 0.892 0.046 0.176 0.663 

Kut 
r1 0.942 0.967 0.895 0.978 0.952 0.928 0.953 0.991 0.991 0.488 0.964 0.907 

r2 0.902 0.878 0.845 0.907 0.970 0.880 0.850 0.921 0.994 0.430 0.639 0.859 

Husaybah 
r1 0.344 0.932 0.794 0.940 0.939 0.909 0.882 0.827 0.914 0.799 0.888 0.909 

r2 0.207 0.445 0.772 0.802 0.854 0.931 0.842 0.805 0.784 0.642 0.831 0.885 

 

Table 6. Partial autocorrelation function 

 

P
e
ri

o
d

ic
 Ф

 

Gauge 
Model *PAF Month 

  1 2 3 4 5 6 7 8 9 10 11 12 

Mosul 

AR (1) Ф1 0.379 0.538 0.542 0.552 0.761 0.878 0.968 0.949 0.956 0.227 0.347 0.536 

AR (2) 
Ф1 0.280 0.406 0.512 0.331 0.681 0.736 0.875 1.472 1.091 1.195 0.331 0.523 

Ф2 0.185 0.349 0.055 0.407 0.144 0.186 0.106 -0.540 -0.142 -1.012 0.070 0.036 

Baghdad 

AR (1) Ф1 0.488 0.662 0.836 0.779 0.974 0.868 0.792 0.948 0.979 0.124 0.635 0.847 

AR (2) 
Ф1 0.282 0.635 0.700 1.319 0.978 1.380 1.343 1.167 1.321 1.942 0.622 0.713 

Ф2 0.242 0.054 0.206 -0.646 -0.005 -0.525 -0.635 -0.276 -0.360 -1.856 0.099 0.211 

Kut 

AR (1) Ф1 0.942 0.967 0.895 0.978 0.952 0.928 0.953 0.991 0.991 0.488 0.964 0.907 

AR (2) 
Ф1 0.698 1.243 1.192 0.834 0.072 0.963 1.187 1.242 0.324 3.397 0.856 1.126 

Ф2 0.269 -0.293 -0.307 0.161 0.900 -0.036 -0.252 -0.263 0.672 -2.936 0.221 -0.227 

Husaybah 

AR (1) Ф1 0.344 0.932 0.794 0.940 0.939 0.909 0.882 0.827 0.914 0.799 0.888 0.909 

AR (2) 
Ф1 0.903 0.883 0.567 0.820 1.171 0.290 0.673 0.525 0.840 1.288 0.619 0.583 

Ф2 -0.614 0.141 0.243 0.151 -0.246 0.658 0.230 0.342 0.089 -0.534 0.336 0.368 
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Table 7. Values of σε
2 for AR models with constant Ф for all 

gauges 

 
 σε 2 

 Gages Mosul Baghdad Kut Husaybah 

Constant Ф AR (1) 0.6241 0.4447 0.2019 0.2049 
 AR (2) 0.6143 0.4451 0.2033 0.2013 

 

 
 

Figure 6. Data generation for Kut gauge 

 

4.2 Results of a suggested new test 

 

Previously, it was looking for a method to choose the best 

model. Regarding the portmanteau lack of fit test, the result 

from Eq. (31) is illustrated in Table 9 regarding the results for 

Mosul gauge. Although the Q-calculated is greater than the 

chi-square Table, that means all models are not accepted. 

Therefore, it should be attempting to test high-order models 

such as AR (3). However, it could choose AR (2) with periodic 

Ф as a better model because it has a lower Q-Calculated. Also, 

from the Table 9, it is found that the AR (2) with periodic Ф is 

suitable for Baghdad. AR (1) with periodic Ф is a better model 

for Kut gauge according to lower Q-calculated.  Also, 

Husaybah gauges could be decided AR (2) with periodic Ф. 

The best model was chosen because the Q-calculated and chi-

square Tables were the lowest, although all models were 

suitable. Regarding the AIC test, the results of Eq. (30) are 

shown in Table 10 with the note that the mean of (σε2) when 

calculating the AIC for AR (1) and AR (2) with periodic, Ф, 

the AR (2) with periodic Ф model was better for Mosul, 

Baghdad, and Kut gauges. According to the lower AIC values, 

Husaybah's AR (1, with constant) was the best. 

 

 
 

Figure 7. Data generation for Husaybah gauge 

 

Table 8. Values of σε 2 for AR models with periodic Ф for all gages 

 

P
e
ri

o
d

ic
 Ф

 

Gauge Model 

σε 2 

Month 

1 2 3 4 5 6 7 8 9 10 11 12 

Mosul 
AR (1) 0.8560 0.7107 0.7067 0.6956 0.4210 0.2288 0.0624 0.0994 0.0856 0.9483 0.8795 0.7132 

AR (2) 0.8316 0.6067 0.7045 0.5784 0.4066 0.2141 0.0599 0.0812 0.0836 0.8606 0.8749 0.7120 

Baghdad 
AR (1) 0.7623 0.5621 0.3006 0.3932 0.0510 0.2463 0.3726 0.1012 0.0408 0.9846 0.5973 0.2827 

AR (2) 0.7458 0.5599 0.2768 0.2676 0.0510 0.2322 0.2732 0.0728 0.0277 0.8440 0.5877 0.2562 

Kut 
AR (1) 0.1121 0.0654 0.1984 0.0442 0.0940 0.1383 0.0909 0.0172 0.0182 0.7622 0.0703 0.1773 

AR (2) 0.0993 0.0558 0.1922 0.0391 0.0582 0.1382 0.0821 0.0109 0.0104 0.6055 0.0330 0.1736 

Husaybah 
AR (1) 0.0099 0.0031 0.0369 0.0015 0.0034 0.0191 0.0067 0.0001 0.0001 0.3667 0.0011 0.0301 

AR (2) 0.8164 0.1146 0.3622 0.1085 0.1108 0.1233 0.2125 0.2907 0.1626 0.3141 0.1714 0.1440 

 

Table 9. Port Manteau Lack of fit test 

 
 Port Manteau lack of fit test 

Models 

 

Gages 

 AR1 

with constant Ф 
AR1 with periodic Ф AR2 with constant Ф 

AR2 

with periodic Ф 

Mosul 

Q-calculated 141.945 140.199 141.865 129.529 

degree of freedom 104 104 103 103 

chi square table 128.804 128.804 127.689 127.689 

Baghdad 

Q-Calculated 43.155 52.054 40.891 40.528 

degree of freedom 35 35 34 34 

chi square table 49.802 49.802 48.602 48.602 

Kut 

Q-calculated 38.405 48.364 38.411 57.062 

degree of freedom 35 35 34 34 

chi square table 49.802 49.802 48.602 48.602 

Husaybah 

Q-calculated 44.982 47.296 47.935 47.600 

degree of freedom 35 35 34 34 

chi square table 49.802 49.802 48.602 48.602 
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Table 10. AIC test results 

 
 AIC test 

Gages               Models AR1 with constant Ф AR1 with periodic Ф AR2 with constant Ф AR2 with periodic Ф 

Mosul -65.417 -87.729 -65.193 -94.091 

Baghdad -113.881 -132.200 -110.943 -145.246 

Kut -226.798 -270.210 -222.216 -291.436 

Husaybah -224.688 -185.101 -223.620 -196.144 

 
 

Figure 8. Autocorrelation rk(ξ) of AR (1) with constant Ф, 

for Baghdad gauge 

 

 
 

Figure 9. Autocorrelation rk(ξ) of AR (1) with periodic Ф, 

for Baghdad gauge 

 

 
 

Figure 10. Autocorrelation rk(ξ) of AR (2) with constant Ф, 

for Baghdad gauge 

 

Suggestion test depending on the rk (ξ) values, the drawing 

between rk (ξ) and lags (k) produces the correlograms. 

Correlograms for all models and for all gauges are shown in 

Figures 8 to 14 with confidence limits that result from Eq. (29). 

The objective is to find the number of points that lie outside 

the confidence limits and could be decided upon the better 

model according to the lower points that lie outside the limits. 

Firstly, it will compute the points outside the limits using Eqns. 

(32) to (35) and compare with Correlogram graphics will also 

be compared with the results from the Portmanteau Lack Test 

and the results from the AIC Test for all models and for all 

gages. Through Correlograms from Figures 8 to 11 for the 

Baghdad gauge, it is very clear that the number of points that 

lie outside the limits was 1,2,1, and zero for the autocorrelation 

function of residual of AR1 with constant coefficients, AR1 

with constant, and AR2 with periodic, Ф respectively. 

 

 
 

Figure 11. Autocorrelation of AR (2) with periodic Ф, for 

Baghdad gauge 

 

 
 

Figure 12. Autocorrelation rk(ξ) for Mousl gauge 

 

From Eq. (32) through Eq. (35) will compute the number of 

points that are outside of the limits. The result is illustrated in 

Table 11, where the AR (2) with periodic Ф is the better model 

and that is identified with the graphics and also the same 

conclusion when using the portmanteau lack test and when 

using the AIC test. Correlograms for Mosul, Kut, and 

Husaybah were shown in Figures 12 through 14. The results 

for all gauges when using the suggested test are illustrated in 

Table 12. 

It was seen that there were no suitable models for Mosul 
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gauges because the AC% was less than 95% for all models, so 

we should try analysis higher-order, anyway. Regarding the 

AR (2) with periodic Ф model is accepted, this identical with 

portmanteau lack test and when used AIC test. The better 

model for Kut gauge is for AR2 with constant. This is identical 

to the portmanteau lack test and doesn’t match when using the 

AIC test. So, the suggested test is more reliable if compared 

with the graphics. Regarding Husaybah gauge from the 

suggested test, the better model is AR (2) with periodicity. 

This is Cleary from graphics and similar when used in 

portmanteau tests and far away when used in AIC tests. Hence, 

the AIC test gives the AR (1) with constant So the results that 

are produced from the suggested test are reliable when 

compared with graphics. This is the proposed statistical 

method for choosing the best model that depends on the value 

of the autocorrelation coefficient of the residual rk(ξ) of lag 

through the acceptance percentage, which represents the 

percentage of the number of points within the upper and lower 

limit. 

 

 
 

Figure 13. Autocorrelation rk(ξ) for Kut gauge 

 

Table 11. AIC test results 

 
 Suggest Test 

La

gs 

for AR1 with 

constant Ф 
for AR1 with periodic Ф for AR2 with constant Ф for AR2 with periodic Ф 

 

Ck or Dk values 

depending 

the sign of 

rk(ξ) 

n’ out 

Ck or Dk values 

depending the sign 

of rk(ξ) 

n’ out 
Ck or Dk values depending 

the sign of rk(ξ) 
n’ out 

Ck or Dk values depending the 

sign of rk(ξ) 
n’ out 

1 -0.09801 0 -0.0688 0 -0.15627 0 -0.13153 0 

2 -0.09404 0 -0.11427 0 -0.05353 0 -0.13332 0 

3 -0.07811 0 -0.06913 0 -0.10461 0 -0.15424 0 

4 -0.1009 0 -0.00448 0 -0.13489 0 -0.04307 0 

5 -0.07168 0 -0.04318 0 -0.08819 0 -0.05005 0 

6 -0.14957 0 -0.16021 0 -0.16296 0 -0.1419 0 

7 -0.14587 0 -0.11144 0 -0.14398 0 -0.14399 0 

8 -0.12079 0 -0.17456 0 -0.12275 0 -0.12389 0 

9 -0.13353 0 -0.06689 0 -0.13414 0 -0.12951 0 

10 -0.14708 0 -0.11976 0 -0.14664 0 -0.16413 0 

11 -0.14421 0 -0.15096 0 -0.14262 0 -0.16648 0 

12 -0.16917 0 -0.08649 0 -0.16079 0 -0.08819 0 

13 -0.15271 0 -0.16022 0 -0.17567 0 -0.16851 0 

14 -0.01201 0 0.020781 1 -0.01499 0 -0.02293 0 

15 -0.08056 0 -0.17792 0 -0.0712 0 -0.17317 0 

16 -0.03858 0 -0.04753 0 -0.05933 0 -0.06822 0 

17 -0.03105 0 -0.01713 0 -0.05048 0 -0.03203 0 

18 -0.10763 0 -0.11489 0 -0.10625 0 -0.18131 0 

19 -0.10191 0 -0.08662 0 -0.09956 0 -0.04083 0 

20 -0.12703 0 -0.15754 0 -0.09353 0 -0.06342 0 

21 0.108263 1 0.097073 1 0.094393 1 -0.01677 0 

22 -0.15876 0 -0.17951 0 -0.16569 0 -0.12101 0 

23 -0.15179 0 -0.13483 0 -0.18075 0 -0.05673 0 

24 -0.03589 0 -0.11892 0 -0.0521 0 -0.13103 0 

25 -0.10547 0 -0.0789 0 -0.10916 0 -0.07502 0 

26 -0.12317 0 -0.08049 0 -0.12284 0 -0.07198 0 

27 -0.15381 0 -0.12257 0 -0.13665 0 -0.16986 0 

28 -0.10765 0 -0.06724 0 -0.10788 0 -0.0728 0 

29 -0.17223 0 -0.1307 0 -0.18232 0 -0.16285 0 

30 -0.093 0 -0.07084 0 -0.09839 0 -0.09048 0 

31 -0.08405 0 -0.14046 0 -0.09075 0 -0.14247 0 

32 -0.19239 0 -0.14399 0 -0.18588 0 -0.19183 0 

33 -0.16325 0 -0.17927 0 -0.1718 0 -0.16705 0 

34 -0.07686 0 -0.04726 0 -0.06774 0 -0.07014 0 

35 -0.08483 0 -0.03855 0 -0.0633 0 -0.04493 0 

36 -0.06737 0 -0.08041 0 -0.05089 0 -0.03216 0 

no. of points 

outside 

limits 

1 
no. of points 

outside limits 
2 no. of points outside limits 1 no. of points outside limits 0  

 AC% 97.22% AC% 94.44% AC% 97.22% AC% 100% 
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Table 12. Results of suggested test 

 

Gages 

 

Models 

AR1 with constant 

coefficients 

AR1 with periodic 

coefficients 

AR2 with constant 

coefficients 

AR2 with periodic 

coefficients 

Mosul 
N'out 9 9 7 6 

AC% 91.43% 91.43% 93.33% 94.29% 

Baghdad 
N'out 1 2 1 0 

AC% 97.22% 94.44% 97.22% 100% 

Kut 
N'out 2 2 1 3 

AC% 94.44% 94.44% 97.22% 91.67% 

Husaybah 
N'out 2 3 4 1 

AC% 94.44% 91.67% 88.89% 97.22% 

 

Table 13. Results of suggested test 

 
Gauges Suitable model Note 

Mosul 
𝑋𝑣,𝜏  =  [−0.142(µ𝜏   + 𝜎𝜏  (𝛷1,𝜏 𝑍𝑣,𝜏−1  +  𝛷2,𝜏  𝑍𝑣,𝜏 −2 + 𝜎𝜀,𝜏 𝜉𝑣,𝜏  ))

+ 1]−7.0422 

Values of Φ1, τ, Φ 2, τ, and σε,τ from table (6) 

and table (8) 

Baghdad 
𝑋𝑣,𝜏  =  [−0.691(µ𝜏   + 𝜎𝜏  (𝛷1,𝜏 𝑍𝑣,𝜏−1   +  𝛷2,𝜏  𝑍𝑣,𝜏 −2   +  𝜎𝜀,𝜏 𝜉𝑣,𝜏  ))

+ 1]−1.4471 

Values of Φ1, τ, Φ 2, τ, and σε,τ from table (6) 

and table (8) 

Kut 
𝑋𝑡  =  [−0.263(395.24 + 274.45 (0.904𝑍𝑡−1   −  0.0121 𝑍𝑡 −2

+  0.2033 𝜉𝑣,𝜏  )) + 1]
−3.8022 

____ 

Husaybah 
𝑋𝑣,𝜏  =  [−0.241(µ𝜏   + 𝜎𝜏  (𝛷1,𝜏 𝑍𝑣,𝜏−1   +  𝛷2,𝜏  𝑍𝑣,𝜏 −2   +  𝜎𝜀,𝜏 𝜉𝑣,𝜏  ))

+ 1]−4.1493 

Values of Φ1, τ, Φ 2, τ, and σε,τ from table (6) 

and table (8) 

 

 

 
 

Figure 14. Autocorrelation rk(ξ) for Husaybah gauge 

 

 

5. CONCLUSIONS 

 

The current study employs AR (1) and AR (2) with constant 

and periodic coefficients to analyse data from stations (Mosul, 

Baghdad, and Kut on the Tigris River, and Husaybah on the 

Euphrates River) in order to generate data for future years and 

determine the most appropriate model for each measuring 

station. The primary purpose of this study was also to offer a 

new statistical test model for eliciting the number of 

correlation functions associated with residual points beyond 

the confidence interval. 

The conclusions of this study are divided into two parts, as 

follows: 

1. Suitable model: after analysing the time series for 

four gauges, it was found that the appropriate models for 

each gauge are presented in Table 13, which can be used 

to generate future discharges. 

2. It was concluded that the suggested test depending on 

rk (ξ) values is more accurate and more reliable when 

compared with the correlograms of rk (ξ), the AIC test, 

and the port manteaux lack test. 
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