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Abstract. Utilizing solar energy has received a giant activity by energy 
applications into distinctive states within the world. The sun is regarded 
strong supply providing uninterrupted coherent energy. In this research, 
simulation study has been done to estimate the performance of dual 
purpose solar collector (DPSC). Flat plate dual purpose solar collector with 
dimensions (194 cm length, 95 cm width and 14 cm thickness) has been 
used for heating the air and water for different using. Rectangular fins are 
used in air duct to increase heat transfer coefficient in air heater part. 
COMSOL Multiphysics 5.4 computer program has been used to calculate 
the theoretical results. Many parameters such as a different flow rate and 
temperatures for the inlet working fluids are investigated. 

1 Introduction 

One of the most serious matters in the world is energy. As we know, there are many 
sources to get the energy. The most important of which is the most common fossil fuel, but, 
because of the many problem caused by fossil fuel, the attention have been given to 
searchers for another sores. Solar energy is considered more renewable energy using 
thermal collectors. These collectors are most common type of solar energy applications. 
Assari et al [1] Studied an experimental and theoretical investigation performance of two 
working fluid solar collector to product hot air and hot water. To improve the performance 
of the hybrid air and water collector, the authors used various air forms of air ducts. They 
showed that the rectangular fin types have better performance. Nematollahi et al [2] 
Published an experimental study to investigate the two different types of flat solar 
collector’s effectiveness. Using dual purpose solar collector (DPSC) decreases costs and 
required space. Venkatesh and Christraj [3] Carry out an experimental study on same 
collector which design by M.R. Assari et al. But in this study, the authors studied dray a 
mixture of three vegetable types; dill the first one, parsley second and the last one was 
coriander at constant air and water flow rates. The obtained results were evaluated with 
other results had been obtained from the solar drier collector have an electrical heater. The 
results appear that the dryer solar collector with an electrical heater has 20 ⁰C -30 ⁰C 
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temperature more than the dryer solar collector without a heater. Ref.[4] Conducted an 
experimental work to increase solar collector’s efficiency by investigating a combined solar 
collector. The testing of this system included as solar water and air heater in two cases 
under the load conditions. The work results show that the solar water heater with 0.015 kg/s 
water mass flowrate has thermal efficiency equal to 67.69%, while solar air heater with 
0.0104 kg/s has an 85% thermal efficiency. However, the rate of thermal efficiency for the 
hybrid solar collector was 70%. Ref.[5] Design and study experimentally and theoretically 
of the dual solar collector. Deferent tests are done to investigate dual solar collector 
efficiency and outlet temperature or both fluids. The authors were found perfect agreement 
between the theoretical and experimental results. They showed a minimum fluid flow rate it 
cases to enhance the temperature and efficiency. The solar air with the triangular duct can 
be providing enhance in the collector efficiency and fluid temperature near to 10% more of 
the other collectors. The dual solar collector has many interesting benefits. This collector is 
modifying from the classic geometry to the solar water heater with L-shaped fins fixed in 
the absorber plate [6]. It's working to raise the amount of heat transfer in air heater side. 
The authors offer that the DPSC can increase the water (100L) temperature around 30°C 
during the day. In water heating, daily efficiency reached 50%. While the daily efficiency 
of air heating reached 52%. Ref.[7] Conducted a numerical simulation work on the DPSC 
integrated with a porous media. The simulation is carry out by ANSYS 13 software 
program. The suggestion system is compared with dual solar collector designed by M.R. 
Assari, et al. The compared show that the increase in the temperature rise is gained for the 
working fluids (air and water) under different operating conditions. Ref.[8] Carried out an 
experimental and theoretical study to investigate the DPSC incorporated with the walls. 
This study conducted to controlled and non-controlled the indoor temperature. The 
numerical and experimental results were validated. The experimental shows that the 
temperature of the air inside the room can be increased by about 3.43 ⁰C during the winter 
season, while the power consumption of the DPSC was 3.5 KWh, when setting the air 
temperature inside the room to 18 ⁰C. The numerical results show that means daily thermal 
efficiency of DPSC was 44.3%. Ref.[9] Studied flat plate solar collector experimentally and 
theoretically. The three modes had been presented, air heating, water heating and air-water 
compound heating. The mathematical model is analysis the effect of working fluid mass 
flow rate on the behaviour of air and water heating modes. The thermal collector efficiency 
is 51.3% and 51.4% for the first and second mode. In the third mode, the rate of the 
collector efficiency equal to 73.4%. Also, the work results present that the fluid flow rate 
has affected significantly on fluid outlet temperature and collector efficiency. In the first 
mode and a second mode, the authors had been recommended the airflow rate reached  0.02 
kg/s - 0.25 kg/s and the water flow rate reached 0.06 kg/s - 0.08 kg/s respectively. the solar 
hybrid collector has been studied experimentally with dehumidification system by Ref.[10]. 
The system has tested with different value of the airflow rate (50.4 kg/h - 64.8 kg/h) and 
water flow rate (60 kg/h to 120 kg/h).The authors concluded that the maximum productivity 
of the distillate during the day of 15.23 kg/m2 and 14.14 kg/m2 was obtained from the 
concave system and convex system respectively. The total thermal efficiency of the system 
ranges about 68% for the collector integrated with turbulators. The purpose of this study is 
to prove the enhancement of a DPSC by computational fluid dynamics. A three-
dimensional CFD analysis is validated with the previous studies for the DPSC. This 
collector combined the employment; therefore it can reduce the cost and working area. The 
collector geometry and weather conditions were studied then 
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2 Description of the system 

The performance of any solar thermal collector may be developed by modified 
conventional design to air-water solar collector simultaneously. The suggested collector 
used as boundary conditions detailed by Assari et al [1]. The modified design of air-water 
solar collector is decrease cost and required space. In this study, the parts of solar air-water 
collector used are shown in figure 1. The main parts of the suggested dual purpose solar air-
water collector are metal pipes and the absorber plate. The absorber plate (94×194×1 mm) 
consists of triangular fins which have angle equal to ⁰60. 

 
Fig.1. Scheme sectional view of the air-water heater collector model. 

The collector is consisting of flat plate solar collector with two parts; one of them for 
water heating has water pipes, inlet water side and outlet water side. These pipes bonded on 
the absorber plate. While the other part is air heating with triangular fins to increase the 
heat transfer coefficient. Table 1 presents the details of geometrical parameters and 
materials used for the suggested collector. 

Table 1. Dual purpose solar air water collector geometric specification 

Collector component Material Quantity Value 

Absorber plate Aluminium 

High  0.94m 

Width  1.94m 

Thick 0.001m 

Water pipes Zinc Diameter 7mm 

Fins Aluminium Triangle with the angle of 60° 

Glazing Float glass Thick 4mm  

Bottom insulation Glass wool Thick 5cm 

Sid insulation Silicon rubber Thick 2cm 

Main frame Stainless steel Thick 1 mm  

3. Modeling of DPSC 

The geometry of the dual purpose solar air-water collector is present in Fig. 1. They 
operate and performance of the solar air-water collector were modelled by using the 
COMSOL Multiphysics software. It is consists of an absorber plate, water pipe, air channel 
and thermal insulation layers. The solar irradiance is passing through the glass cover. 
Therefore is incident on the absorber plate and transformed into internal thermal energy. 
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The ambient air at temperature ambT is entering through the air channel, it is streaming 

down the absorber plate and the water pipe, and it gets the heat by two sources; the first one 
from the absorber plate and the second from triangular fins. At the same time, the water is 

flowing at inlet temperature inwT ,  through the pipes; it's heating by the absorber plate and 

pipe surface. The first modelling point consists of present components of the DPSC. They 
are shown in Fig. 2. These components correspond to four domains: the water pipes (A), 
absorber plate (B), triangular fins (C) and air channel (D). 

 
Fig. 2. Shows the main components of the DPSC. (A) water pipes, (B) absorber plate, (C) triangular 

fins, (D) air channel 

The water flow inside the circular pipes was laminar flow type. It is depending on the 
Reynolds number (2000 to 4000). This is defined as shows: 

μ

ρDV
eR         (1) 

Where:  and V is the density and velocity of working fluid (water), respectively, 

D circular pipe diameter and water dynamic viscosity. 

3.1 Geometry and grid generation  

The system modeling and simulation was carried out by COMSOL Multiphysics 5.4. It 
is a good environment to solve set of equation systems of unsteady-state or stationary in 
space partial differential equations in two or three dimensions.  The primary stage of the 
built DPSC model is the type of mesh. Therefor many types of CFD mesh have been 
created (see figure 1). The type and number of mesh are larger in this model where fluid 
velocity gradients, temperatures are presumed to be significant. Figure 3. shows the mesh 
close to the water pipes, the triangular fins and the absorber plate is small sizes to the 
accuracy of the solution. 

 
Fig. 3. The mesh type for the DPSC model. 
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The complete mesh consists of 1186525 domain elements, 186108 boundary elements, 
and 20144 edge elements. The assumptions used in simulation analyses of air-water solar 
collector are listed below: 

 The solar air-water collector is 3D flow. 

 The mean temperature value for all metal parts of the collector ( mpT , ). 

 The flow of the working fluid is laminar  
 Neglecting the heat losses by convection and radiation from the metal parts. 

3.2 Governing equations 

The equations using in the fluid flow is incompressible Navier-Stokes equations. The 
governing equations of modelled:  

 Continuity equation 
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Where  is fluid density (kg/m3), wvu ,,  are velocity vectors (m/s). 

 Momentum conservation equation 
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y- direction momentum equation 
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z- direction momentum equation 
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 Energy conservation equation 
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Where ,, TC p and k  are specific heat of fluid (J/(kg.K)), fluid temperature (K), 

dynamic viscosity of fluid (kg/(m.s)), and thermal conductivity of fluid (W/(m.K)) 
respectively. 

3.3 Initial conditions  

The above equations have been solved by the following initial conditions. 
At first the initial temperature of the initial air, water inlet and absorber plate equal the 

ambient air temperature at the starting time (which t=0). 
0)(tambT0)tz,y,(x,pw,air,T       (7) 

While, the initial air and water velocity field (in 3D) are equal to zero: 
00)tz,y,(x,wair,w0)tz,y,(x,wair,v0)tz,y,(x,wair,u     (8) 
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3.4 Boundary conditions 

The constant inlet water temperature, however the inlet air temperature is equal to 
ambient temperature, while the inlet pressure equals the measured atmospheric pressure: 

Cο20t)z,y,0,(xwT         (9) 

(t)ambTt)z,y,0,(xairT         (10) 

(t)atmpt)z,y,0,p(x         (11) 

The air channel walls which do not in contact with the absorber plate or the has good 
thermal insulation, also there are No-slip condition at the air chanal walls, therefore 

0Tairk        (12) 

0t)z,y,(x,airwt)z,y,(x,airvt)z,y,(x,airu      (13) 

4 Model validation  

In order to identify differences between the experimental results of the previous work 
and the simulation results of this study, prepared the chart described below which shows the 
absorber plate temperature of the two studies and change with time. We note good 
convergence between the two results. (See fig.4)  
Two indicators have been used to show the model accuracy: the first is Mean Bias Error 

(MBE) as follows: 



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n

1
MBE       (14) 

where: exp,iT and compiT ,  are the experimented and computed absorber plate 

temperature, respectively, while n  refer to the total number of values. 
While the second indicators is Root Mean Square Error (RMSE) is defined as: 



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n

1i
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n

1
RMSE      (15) 

 
Fig. 4. Computed and experimental results acquired during 21 May 2018 for a DPSC. 

We note a good convergence between the experimental results and the simulation 
results; this is due to the adoption of the same conditions in simulation. 
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5 Result and discussion  

 The solar air-water collector under test was directed southward in the city of Najaf, Iraq 
(latitude 32°02', longitude 44°20') and the tilt angle is 32° .Three days of the year, summer, 
winter and spring data were used to compare results. The simulation results for the 
modified the DPSC is presented in this section. The meteorological (weather condition) and 
operation parameters (outlet temperature) during three days on January, May and July are 
shown in figures 5-7. 

Figure 5 (A) shows that during an experimental winter (5 January) day the solar 
irradiance is lower on the dual purpose solar collector surface than the other two days. 

 
Fig. 5. (A) Solar irradiance and ambient temperature on cloudy day 5 Jan. 2018, (B) outlet air 
temperature and (C) outlet water temperature 

 
The simulation outlet water and air temperatures increases have a time variation that is 

analogous to the direct solar irradiance curve (like Fig. 5B and Fig. 5C). Next figure 6, the 
DPSC operation during clear sky day on May is presented. The outlet water and air 
temperatures are smaller in the morning for the DPSC than the end of the day. This 
meaning lower solar irradiance on the morning and accumulated the heat in the collector at 
the end of the day. 

 

Fig. 6. (A) Solar irradiance and ambient temperature on nearly clear sky day 1 May 2018, (B) outlet 
air temperature and (C) outlet water temperature 
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The contours draw of the DPSC temperatures obtained from the 3D CFD analysis are 
described in figures 7, 8 and 9. They are presenting the temperature gradient for the two 
working fluids (water and air) for three days. The contour DPSC of magnitudes 
temperatures assist to understand the thermal heat phenomenon of the solar collector during 
the day. 

 

Fig. 7. Temperature distribution for the fluids stream along the flow at summer season 

 

Fig. 8. Temperature distribution for the fluids stream along the flow at winter season 
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The fluid temperature distribution in a DPSC with various times during the day has 
been shown in Fig. 9. At the beginning of the day, the absorber plate and water pipe 
temperature are higher than in other parts. The absorber plate sends heat energy to the water 
pipes and air channel that transmit this energy to water and air. They observed that higher 
temperature values are expected at 2 PM for three days. 

 

Fig. 9. Temperature distribution for the fluids stream along the flow at spring season 

 
The above figures show that the temperature distribution in the DPSC three days for 

three seasons. The maximum temperature about a (341k, 319K and 335K) in the absorber 
plate in Summer, winter and Spring respectively. It starts with the gradual escalation with 
the solar radiation increase. The distribution of air velocity is showing in figure 10. Air 
velocity varies between 0.02 m/s - 0.18 m/s. The velocity of air near the fins wall is closed 
to zero; it then gradually increases until it reaches the greatest value in the middle of the 
fins. Air velocity effects on the air outlet temperature, when the velocity increases, the air 
outlet temperature decreases. 

 

Fig. 10. The fluid velocity distribution inside DPSC: (A) air, (B) water. 

 
Figure 10 shows the flow of water in the pipes. Because the velocity is equal in all pipes 

according to the simulation assumptions, we took one pipe to show the velocity change. 
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The velocity in the pipe is fully developed where the greatest velocity is concentrated in the 
middle. 

6 Conclusion  

A simulation analysis has been study to investigate the thermal performance of the solar 
air\water collector by using computational fluid dynamics was consider in this paper. The 
system modelling and simulation studies have been performing by using software 
COMSOL Multiphysics 5.4. Temperature and velocity of fluid streams are present under 
time dependent situation. The reduction of airflow by fins increases the outlet air 
temperature. Parametric analyses on the system are fluid flow rates, solar radiation and 
water inlet temperature. When increases water inlet temperature, efficiency decreases, other 
ways the efficiency increases with increases the mass flow rate. The differences between 
actual and simulation results for the dual-purpose solar collector is 2.23%. The higher 
efficiency was 69.42% in summer. 
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