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Abstract: Unconfined compressive strength (UCS) can be used to assess the applicability of geopol-

ymer binders as ecologically friendly materials for geotechnical projects. Furthermore, soft compu-

ting technologies are necessary since experimental research is often challenging, expensive, and 

time-consuming. This article discusses the feasibility and the performance required to predict UCS 

using a Random Forest (RF) algorithm. The alkali activator studied was sodium hydroxide solution, 

and the considered geopolymer source material was ground-granulated blast-furnace slag and fly 

ash. A database with 283 clayey soil samples stabilized with geopolymer was considered to deter-

mine the UCS. The database was split into two sections for the development of the RF model: the 

training data set (80%) and the testing data set (20%). Several measures, including coefficient of 

determination (R), mean absolute error (MAE), and root mean square error (RMSE), were used to 

assess the effectiveness of the RF model. The statistical findings of this study demonstrated that the 

RF is a reliable model for predicting the UCS value of geopolymer-stabilized clayey soil. Further-

more, based on the obtained values of RMSE = 0.9815 and R2 = 0.9757 for the testing set, respectively, 

the RF approach showed to provide excellent results for predicting unknown data within the ranges 

of examined parameters. Finally, the SHapley Additive exPlanations (SHAP) analysis was imple-

mented to identify the most influential inputs and to quantify their behavior of input variables on 

the UCS. 

Keywords: Random Forest; machine learning; SHAP; geopolymer; clayey soil; unconfined  

compressive strength; prediction 

 

1. Introduction 

The mechanical, chemical, or biological improvement of the engineering characteris-

tics of soil is known as soil stabilization. This is a method used in civil engineering to 

develop and enhance the engineering characteristics of soils [1,2]. These characteristics 

involve plasticity, durability, compressibility, permeability, and mechanical strength [3–

6]. Mechanical or physical modification is common, but some researchers prefer to use the 

term ‘stabilization’ to refer to chemical modification in the soil characteristics by adding 

chemical additive materials. Stabilization is the act of combining and mixing different el-

ements with soil to enhance certain soil qualities. The procedure could include combining 

commercially available additives to change the plasticity, texture, or gradation or serve as 
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a binder for cementing the soil. Alternatively, it might involve blending soils to produce 

the appropriate gradation. In addition, for the soil to effectively sustain the stresses im-

posed by the superstructures, it is necessary to use soil stabilization procedures. This will 

ensure the necessary stability of the soil. Commonly, cement modification, which makes 

use of ordinary Portland cement (OPC), is employed in order to stabilize problematic soils 

via the utilization of chemical processes. However, throughout the last several decades, 

the use of OPC has been associated with various environmental problems, the most sig-

nificant of which is the carbon footprint connected with the OPC building sector [7–11]. It 

is common knowledge that the production of OPC requires enormous amounts of energy, 

results in an excessive extraction of mineral materials, and causes the emission of high 

amounts of carbon dioxide (CO2) into the atmosphere. OPC production is considered re-

sponsible for about 5 to 8% of the total CO2 worldwide emission [12]. This problem has 

encouraged academics to design building binders that are less environmentally harmful 

and more sustainable. Geopolymer is a potential substitute for OPC since it is a synthetic 

alkali aluminosilicate material produced by reacting solid aluminosilicate [13,14] with hy-

droxide-silicate combination solution or concentrated aqueous alkali hydroxide. Its man-

ufacturing method requires a lower total amount of fuel energy and generates a lower 

total amount of greenhouse emissions [11,15]. Geopolymers can be produced using a solid 

aluminosilicate derived from various industrial waste products, including silicate and/or 

alumina. These materials may be identified by their acronyms, such as ground-granulated 

blast-furnace slag (GGBS), metakaolin, and fly ash (FA) [16–18]. 

Turner and Collins [19] determined the amount of carbon dioxide equivalent emis-

sions (CO2-e) produced by all processes required to get raw materials, including concrete 

production. The assumptions depended on the activities involved in producing one cubic 

meter of Grade 40 concrete (for example, concrete with a compressive strength of 40 MPa) 

in the Melbourne Metropolitan area, which included the construction practices, manufac-

turing methods, and use of locally available materials. Sodium hydroxide with 16M con-

centration was the alkaline activator used in the geopolymers production. The geopoly-

mer concrete emitted about 9% less CO2 than conventional concrete with 100% OPC 

binder without any additives or replacement materials. This result was significantly lower 

than what was predicted by previous research. The inclusion of transport, treatment, and 

mining of raw materials in the manufacturing process of alkali activators for geopolymers, 

the expense of energy throughout the manufacturing process of alkali activators, and the 

requirement for higher curing temperatures for geopolymer concrete in order to gain sen-

sible strength were the primary parameters that caused higher than predicted emissions 

for geopolymer concrete. 

With the addition of fly ash or GGBS, soil improvement has been employed in ge-

otechnical engineering projects [20,21]. Embankment works include building foundations, 

roads, dams, canals, and other similar structures [22–24]. According to findings from ear-

lier studies, incorporating GGBS or FA into the soil may improve its mechanical strength 

[21,25–27]. The effectiveness of FA and GGBS in soil-stabilizing applications was studied 

by Sharma and Sivapullaiah [28]. GGBS and FA were assessed for the following curing 

times: 7, 14, and 28 days. After being allowed to cure for 28 days, the stabilized soil at-

tained a strength of 0.45 MPa, and its plastic limit and water content values decreased. 

According to the results, utilizing GGBS and FA as binders offers a new opportunity for 

boosting pozzolan activity, potentially raising UCS and lowering clay soil swelling poten-

tial [25–29]. 

In general, determining the soft soil geotechnical parameters is a laborious, time-con-

suming, expensive, and energy-intensive process which involves a lot of time, work, and 

equipment. For instance, to obtain accurate data for determining the compaction charac-

teristics and the UCS of soils, at least six and four tests need to be done, respectively. 

Therefore, forecasting models have been developed to effectively predict the com-

paction parameters, UCS, and other soil properties. Traditional prediction methods for 

the UCS of stabilized soils are based on empirically derived relationships from statistical 
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key parameters, using linear and non-linear regression approaches [30–32]. These ap-

proaches tend to generate equations with various undetermined coefficients that could 

impact the mappings of independent and dependent variables. Consequently, the result-

ing models are intrinsically erroneous despite being effective in some scenarios of stabi-

lized soils, mainly because of their complexity. 

Due to big data generation and data mining, Machine learning (ML) techniques and 

Artificial Intelligence (AI) are the appropriate choices for developing novel approaches 

that can address emerging challenges. For instance, models were developed by Suthar [33] 

for the UCS of lime sludge and stabilized pond ashes. The study evaluated the potential 

of five algorithms, including artificial neural networks (ANN), Random Forest (RF), 

Gaussian processes, support vector machines (SVM), and M5 model tree in terms of cor-

relation coefficient (R), mean absolute error (MAE) and root mean square error (RMSE). 

For the test set, the Gaussian process model reported the lowest values of MAE = 16.455 

and RMSE = 23.016 kPa, and the highest value of R = 0.997. Multi-gen genetic program-

ming (MGGP) was employed by Soleimani et al. [34] to predict the UCS of geopolymer-

treated clayey soil. The proposed MGGP model included multiple parameters affecting 

the soil UCS, including additive percentages, plastic limit, plasticity index, and others. 

The authors additionally carried out a parametric analysis to validate the employed mod-

els. The analysis revealed that the equations used to evaluate the UCS yielded good accu-

racy. Similarly, Support Vector Regressor (SVR) was employed by Mozumder et al. [35] 

to predict the shear strength of clayey soil Stabilized with geopolymer. The authors used 

213 soil samples processed with geopolymer-based additives. The study revealed that 

SVR performs well in accurately predicting the shear strength of soil treated with geopol-

ymer. Another study [36] employed Genetic Algorithm optimized SVR (GA-SVR) and 

ANN to predict the tensile strength (TS) and UCS of rocks in Bakken Field. The models 

outperformed other correlations regarding MAE, RMSE, and R2. The study of Nagaraju 

and Prasad [37] examined the effectiveness of the particle swarm optimization (PSO) 

method in forecasting the 28-day UCS of expansive blended clays that have been alkali-

activated. An accurate estimate using PSO is still achievable with the minimal experi-

mental data currently available. Gullu [38] used several AI techniques to predict the UCS 

of soil stabilized with steel, jute fiber, and ash. A strong correlation between the AI algo-

rithms employed and the estimated UCS value was indicated by the outcomes. Mathe-

matical modeling for the UCS values of coal-grout composites was also conducted in [39] 

by using six ML models. SVM, decision trees (DT), and back-propagation neural network 

(BPNN) outperformed other models. Several studies highlighted the benefits concerning 

ML and AI techniques in the areas of road pavements as well as geotechnical engineering 

[40–44]. 

Although the UCS can be predicted using the models mentioned above, there is still 

room for improvement in accuracy. The RF algorithm approach has particular benefits 

regarding training time since it is a parallelized and integrated method [45,46]. Addition-

ally, the RF employs random sampling, which benefits the trained model. Those benefits 

are low variance, excellent generalizability, and insensitivity to partially missing features. 

Although RF can be considered one of the most effective and popular ML algorithms, 

an extensive examination of the literature indicates that studies have yet to use this ap-

proach to forecast the UCS of clayey soil stabilized with geopolymer. Therefore, an at-

tempt has been made to investigate its potential for forecasting the UCS of clayey soil 

stabilized with geopolymer, keeping in mind the utility of this modeling approach in civil 

engineering applications. In this work, the RF algorithm was developed to investigate the 

feasibility of applying such a model for the quick estimation of the UCS. For this, 283 soil 

samples were compiled from prior studies and lab experiments to investigate soil proper-

ties. The dataset comprised one target variable, the UCS, and the following input features: 

ground-granulated blast-furnace slag percentage (S%), plasticity index (PI), alkali-to-

binder ratios (A/B), fly ash percentage (FA%), molar concentrations of an alkali solution 

(M), and the ratios of Si/Al and Na/Al. The model performance was evaluated using three 
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assessment criteria, including MAE, RMSE, and R. RF was also used to establish an asso-

ciation between the soil input features and the target value by conducting a SHAP analysis 

of the input features. 

2. Materials and Methods 

2.1. Research Methodology 

The RF approach described in this section in is used to forecast the UCS of clayey soil 

stabilized by geopolymers. The steps used in this research are depicted in Figure 1. First, 

the entire database was randomly divided into two data segments: training and testing. 

The prediction model is then trained using RF methods. Next, the hyperparameters of the 

selected algorithms are tuned based on the training data segment using the tuning method 

outlined in Section 2.4. The model performance is then tested during the training stage 

using 5-fold cross-validation. Once the ideal hyperparameters have been found, the test 

set is used to evaluate the final model prediction error. Finally, the average SHAP value 

between the contributing variables and the predicted UCS are then analyzed using SHAP 

analysis. 

 

Figure 1. Research Methodology. 

2.2. Decision Tree 

Random Forest (RF), which has become one of the most popular techniques for in-

ductive inference, is theoretically based on the decision tree [47]. A decision tree utilizes 

the mode or means as the forecast for the observations in the area after recursively divid-

ing the feature space into several rectangular areas [48–50]. It is also referred to as the 

decision tree approach since the criteria used to divide the feature space may be repre-

sented as a tree. Data with similar response values are clustered together for a regression 

task, and each region is projected with a fixed value (the mean). The mean squared error 

(MSE) is frequently used for regression issues as a loss function, and the proper splitting 

points and splitting variables are chosen by minimizing the loss function. After minimiz-

ing the loss function, the point pair and splitting variable can be selected. The procedures 

for using a binary regression tree to solve this problem can be broken down into four parts 

[50]. 
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Suppose that 𝑌 is a response that 𝑝 predictors will predict, i.e., 𝑋1, 𝑋2, …, 𝑋𝑝: 

1. Start with the root node, which includes all of the cases. 

2. One of the predictors, 𝑋𝑗, is subjected to a test at each of the tree’s internal nodes. 

3. Observations are placed into the tree right or left sub-region (branch), depending on 

how the test turns out. 

4. In order to make a prediction, keep going back to Step 3 until a terminal leaf or node 

is reached. 

2.3. Random Forests (RF) 

In this work, a RF model is used to predict the UCS for geopolymer-stabilized clayey 

soil. In particular, RF has the benefit of being able to handle imbalanced, multiclass, and 

small sample data without the need for data preparation, in contrast to BPNN and SVM 

models [51]. The RF developed by Breiman [46] is a regression approach that incorporates 

a wide range of decision tree techniques to forecast or characterize the value of a variable. 

In other words, RF builds regression trees and averages the outcomes after receiving the 

input vector made up of the characteristic values for a specific training set [52]. By devel-

oping trees from several training data subsets, RF decreases the variance in bagging by 

removing the correlation between different decision trees. The RF model generates train-

ing data using the bagging approach by resampling the original dataset with replacement. 

Be aware that specific random data could be used more than once during training, while 

other data might not be used at all. Such bagging characteristic aids the RF algorithm’s 

increased predictability and stability [46]. In order to further improve generalization abil-

ity and decrease generalization error, RF employs the best-split variables in a randomly 

picked evidentiary feature subset while growing a tree [46]. The samples that were not 

chosen for the bagging process training are known as out-of-bag (OOB) samples. A com-

plete formulation of the RF algorithm can be found in Breiman [46]. The number of vari-

ables chosen randomly and used in each split of a single decision tree (𝑚) and the number 

of trees (𝐵) are two crucial hyperparameters in constructing RF. These two parameters are 

frequently found using a grid search and cross-validation [53]. Breiman [46] states that the 

procedures for constructing a RF model are as follows: 

1. For 𝑏 = 1 to 𝐵: 

a. From the training data, draw a bootstrap sample with size N. 

b. The following steps should be repeated recursively for each terminal node of the 

tree, until the minimum node size 𝑛𝑚𝑖𝑛 is attained to grow a RF tree 𝑇𝑏 accord-

ing to the bootstrapped data. 

i. From the total 𝑝 variables, choose 𝑚 variables randomly. 

ii. Among the 𝑚 variables, choose the best one. 

iii. Generate two subregions by splitting the node. 

2. Output the ensemble of trees, {𝑇𝑏}𝑖 , 𝑖 = 1,2, … , 𝐵. 

For a regression problem, the corresponding prediction can be expressed as 𝑦̂ =
1

𝐵
∑𝑏=1

𝐵  𝑇𝑏(𝑥) given a new input 𝑥. Figure 2 illustrates the previous steps. 
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Figure 2. The RF prediction algorithm. 

2.4. Tuning RF Hyperparameters Using GridSearchCV 

By adjusting the values of its hyperparameters, the RF configuration can be changed 

[54]. Although the Scikit-learn implementation of the RF default version typically pro-

duces satisfactory results without tuning, performance can frequently be improved by 

hyperparameter adjustment depending on the given features and size of the data [55]. 

Furthermore, different hyperparameters can be used to control the amount of time spent 

in learning, the number, and complexity of the decision trees, etc. 

The number of decision trees in the forest (𝐵), as well as the number of features taken 

into account for each split at each decision tree node (𝑚) are the two key factors when 

utilizing the RF model, as referred previously. 𝐵 has a default value of 500. A more stable 

outcome can be achieved by changing the value of 𝐵 [56]. From the total number of fea-

tures, one-third of it is considered the default value for 𝑚 [46]. To obtain the ideal values 

for the parameters to predict the UCS, a grid search is employed since the performance of 

RF can be sensitive to 𝐵  and 𝑚  [57]. A built-in Scikit-learn technique called 

“GridSearchCV” was developed to optimize hyperparameters by performing a compre-

hensive search through a set of parameter values. R2 is the most used statistical metric to 

evaluate models in regression issues. This study used R2 to evaluate the RF predictive 

performance and goodness of fit together with the RMSE. The GridSearchCV yields the 

best RF estimator by averaging the R2 scores of the test folds that were left out during the 

training process. 

2.5. Performance Metrics 

A statistical indicator of how well anonymous data are predicted concerning known 

data is also R2 [58], which ranges from 0 to 1. The closer to 1 this metric is, the more accu-

rate the forecast. The following equation is used to compute R2. 

R2 = 1 −
∑  𝑛

𝑖=1   (𝑦𝑖
𝑜𝑏𝑠 − 𝑦𝑙

𝑝𝑟𝑒
)

2

∑  𝑛
𝑖=1   (𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
−𝑜𝑏𝑠)2

 (1) 

where 𝑦𝑖
−𝑜𝑏𝑠 is the mean of the actual data, 𝑛 denotes the number of observations, and 

𝑦𝑖
𝑝𝑟𝑒 and 𝑦𝑖

𝑜𝑏𝑠 denote the ith observation of the actual data and forecasted data, respec-

tively. 

The variance of the residuals is the square root of the RMSE. It displays the model’s 

overall fit to the data or how well the observed data points match the values the model 

predicts. If the model’s primary goal is prediction, this is the most crucial fit criteria. 
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RMSE = √
1

𝑛
∑𝑖=1

𝑛  (𝑦𝑖
𝑜𝑏𝑠 − 𝑦𝑙

𝑝𝑟𝑒
)

2
 (2) 

The mean absolute error (MAE) can be computed from the following equation: 

MAE  =   
∑ |𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
𝑝𝑟𝑒

|𝑛
𝑖=1

𝑛
 (3) 

3. Database Used 

The current investigation used a database with 283 UCS test results [59]. The data 

was obtained by analyzing three different clayey soil types at three identified locations in 

Silchar, India, with 2 m below the earth’s surface. According to the Unified Soil Classifi-

cation System (USCS), the classification of soils is CH, CH, and CL, with the optimal mois-

tures being 19.05, 19.26, and 23.89; liquid limits being 37.68%, 82.15%, and 116.27%; plastic 

limits being 23.61%, 25.69%, and 27.81%; and plasticity index being 14.07%, 56.46%, and 

88.46%, respectively. The CH soil represents inorganic clays of high plasticity and fat 

clays, while CL represents Inorganic clays of low to medium plasticity, gravelly clays, 

sandy clays, silty clays, and lean clays. The clayey soil dry was mixed with 50, 40, 35, 30, 

25, 20, 16, 12, 8, and 4 percent in weight of ground-granulated blast-furnace slag (%S) as a 

binder. The soil was also mixed with 20, 16, 12, 8, 4, and 0 percent of fly ash (FA%) also as 

a binder. In addition, alkali-to-binder ratios (A/B) with values of 0.85, 0.65, and 0.45 were 

also investigated, along with six molar concentrations of an alkali solution (M) with the 

following values: 15, 14.5, 12, 10, 8, and 4. Mozumder and Laskar (2015) [59] provided 

comprehensive information on the chemical and physical features of the sources. The sam-

ples that were prepared in molds were maintained in the lab for 24 h before being contin-

uously cured in water for 28 days. After curing, samples were allowed to air dry for an 

hour at room temperature before testing. The final database included PI, S%, FA%, M, 

A/B, Na/Al, and Si/Al as the inputs and UCS as the output. Table 1 summarizes the statis-

tical features of the available experimental data. 

Table 1. Model variable descriptive statistics. 

Statistics (PI) (%) S (%) FA(%) 
(M) 

(mol/L) 
(A/B) (Na/Al) (Si/Al) 

UCS 

(MPa) 

Standard devia-

tion 
30.73 12.92 4.66 2.73 0.14 0.44 0.35 6.49 

Mean 38.83 15.90 2.12 12.42 0.62 1.17 1.70 5.77 

Median 14.07 16.00 0.00 12.00 0.65 1.18 1.49 2.91 

Maximum 88.46 50.00 20.00 15.00 0.85 1.98 2.49 24.26 

Minimum 14.07 0.00 0.00 4.00 0.45 0.24 1.49 0.00 

Kurtosis −1.28 0.30 4.97 2.57 −1.03 −0.62 0.36 −0.47 

4. Model Result 

4.1. Hyperparameter Optimization: GridSearchCV 

It was feasible to identify the parameters that matched the predicted model charac-

teristics by using the GridSearchCV method’s exhaustive parameter search. This method 

makes it simpler to locate parameters that have the best model estimate accuracy [60]. By 

specifying the hyperparameter’s values and ranges and using the GridSearchCV function, 

the optimal set of RF hyperparameters was discovered. Figure 3 displays the outcomes of 

the GridSearchCV. The 500-tree forest with five predictors produces the maximum R2. The 

models started to overfit when there were more than five predictors. More predictors in a 

model tend to increase the risk of overfitting the data due to the curse of dimensionality. 
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Additionally, a simpler model lowers the cost of computation. Consequently, 500 trees 

and five predictors were used to create the final RF model. 

 

Figure 3. Results from the hyperparameter tuning by using five-fold cross-validation. 

4.2. Evaluation of RF Model 

Figure 4 compares the measured and estimated UCS values for both the training and 

testing sets. From Figure 4, it can be seen that the equality line (red line) is surrounded by 

most of the data points. The RF model has RMSE = 0.4823 and R2 = 0.9949 in the training 

group. However, the performance of the test set is slightly lower than the one of the train-

ing set, with RMSE = 0.9815 and R2 = 09757. A lower R2 generally indicates overfitting in 

the testing set. However, this is not a significant issue for the RF model study, given the 

high R2 and low RMSE values that were attained. The RF method uses several regression 

trees and sets of input variables at random to uncover internal relationships between fea-

tures. The randomness significantly enhances the resilience of the model. Because it splits 

at nodes, the RF model’s regression trees can be considered an ensemble approach. Then, 

the RF model combines such functions to avoid having a lot of variation in a single tree. 

  

(a) RF training set (b) RF testing set 

Figure 4. Predicted UCS by RF. 
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4.3. Comparison between RF with Linear Regression 

The predicted UCS values using a linear regression technique are shown against the 

relevant observations in Figure 5. A regularized version of the linear regression approach, 

known as Ridge Regression, was used to manage any possible overfitting problems in the 

linear regression. The Ridge Regression applies a penalty to reduce the size of the regres-

sion coefficients [49]. This penalty is accomplished through a sum of squares penalty-min-

imized residual. A thorough definition of ridge regression can be found in [49], which also 

provides examples of how the penalized coefficients frequently reduce variance and 

lessen overfitting. 

The R2 values from the ridge regression model for both the testing and training sets 

are 0.7121 and 0.8379, respectively, as shown in Figure 5. A lower R2 value indicates un-

derfitting and suggests that the model cannot adequately account for data variance [49]. 

In comparison to the RF, the ridge regression performed significantly poorer. This is most 

likely due to the linear regression model’s inability to handle the UCS and variable non-

linearity. 

  

(a) Ridge regression training set (b) Ridge regression testing set 

Figure 5. Predicted UCS by Ridge Regression Model. 
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In this study, to emphasize the prediction power of the RF model, the results from 
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Figure 6. Comparison between the performances of the RF and prior models. 

Table 2 summarizes other statistical quality indicators for the pre-existing models 

and the RF model for the whole dataset prediction. From Table 2, the RF model in this 

study has the lowest MAE and RMSE, as well as the maximum R2, demonstrating that it 

is the most efficient and robust model. Figure 7 displays the absolute error for the UCS 

prediction versus the cumulative frequency of the proposed and pre-existing models. The 

proposed model (RF) predicts the UCS of 70% of the data with an absolute error of fewer 

than 0.4 MPa and 80% with an absolute error of fewer than 0.57 MPa. On the other hand, 

the proposed model in this study predicted only 10% of the experimental data with an 

absolute error higher than 0.93 MPa. The model from Soleimani et al. [34] (MGGP eq.), 

which was the second most precise model, correctly predicted 14% of the experimental 

data and 21% of the UCS measurements with absolute relative errors lower than 0.4 MPa 

and 0.57 MPa, respectively. 

Table 2. RF and previously developed white-box machine learning models measures perfor-

mances. 

Model RMSE (MPa) R2 MAE (MPa) 

RF 0.616 0.985 0.351 

MGGP [34] 1.790 0.924 1.354 

MLSR [34] 3.739 0.788 2.656 

MVR [59] 2.777 0.817 2.220 
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Figure 7. Cumulative frequency vs. absolute residual for the RF model and the prior white-box ML 

models (Soleimani et al. [34], Mozumder and Laskar [59]). 

5. SHAP Analysis 

Lundberg and Lee [62] proposed SHAP analysis, a unified method for understanding 

ML models, which incorporates the idea of Shapely Additive explanations as an alterna-

tive to other sensitivity analyses. The Shapely value can be visualized as the relative im-

portance and contribution of a given variable to produce the final output variable. The 

idea is comparable to a parametric study, in which all other variables are held fixed while 

a single variable is changed to study how that variable affects the target feature. Here, the 

effect of the input variables on the UCS is defined by discussing the relative weights of 

several factors to calculate the UCS values. 

The summary plot is shown in Figure 8, which illustrates the trend of the correspond-

ing variable and the distribution of SHAP values for each characteristic. The specific 

SHAP value is shown on the x-axis of the summary plot, while the input variables that 

were employed in this research are ordered according to their importance along the y-

axis. Depending on which side the red dots are on, the red instances signify higher values 

with an impact on the model prediction. SHAP values for each variable are shown against 

the change in their respective inputs on the horizontal x-axis, illustrating the degree to 

which each variable can be predicted (blue to red). It is clear that ground-granulated blast-

furnace slag (%S), plasticity index (PI), the ratios of sodium to aluminum, and the molar 

concentrations of an alkali solution (M) all considerably contribute to the UCS prediction. 

The amount of fly ash percentage (FA%), the alkali-to-binder ratio (A/B), and the silicon-

to-aluminum ratio (Si/Al) are less relevant. The improvement in UCS that results from an 

increase in S is seen in Figure 8. This was to be expected since a larger content of S is a 

sign of a higher quantity of binder being present in the mixture and, thus, a higher UCS. 

The findings obtained from this analysis are in high accordance with the ones published 

by several other researchers [34,59,63]. According to the findings of the SHAP study, a 

higher PI leads to a lower UCS, as observed in Figure 8. This result was also expected. If 

the PI increases, the proportion of polymer emulsion to the bentonite content, which nor-

mally stays together, will change. In addition, research has shown that raising the PI re-

duces the stiffness and peak strength of the soil while also making it more ductile [34,64]. 

As shown in Figure 8, increasing both M and A/B improves the UCS of the geopolymer-
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stabilized clayey soil. This result is not a surprise, given that the concentration of alkali 

(NaOH) is one of the most important parameters in geopolymerization [37]. A higher con-

centration of NaOH enhances the UCS while simultaneously reducing the mix workabil-

ity. This is caused by an increase in the solubility of aluminosilicate [34,65–67]. 

Figure 8 also illustrates the results of analyzing the effects of the Si/Al and Na/Al 

combinations. UCS is governed by the kinetic reactions during the synthetization of the 

geopolymer, which is controlled by the interaction of these factors. According to previous 

research [59,68], an increase in the ratios of Si/Al and Na/Al causes an increase in the UCS. 

 

Figure 8. Summary plot of SHAP values. 

Streamlit (https://streamlit.io) was used to develop an interactive web application us-

ing the improved ML model based on the RF algorithms. It enables quick predictions of 

the UCS by the ML model using the inputs PI, S%, FA%, M, A/B, Na/Al, and Si/Al. The 

ranges of the input variables that can be chosen match those that were used to train the 

model (see “Database Used” section). The web application can be accessed at [69]. It has 

been deployed to the cloud. Any web browser, even mobile ones, can be used to open and 

execute it. 

6. Conclusions 

This work used rigorous machine learning approaches based on a robust algorithm 

named Random Forest (RF) to simulate unconfined compressive strength (UCS) in clayey 

soil stabilized with geopolymer. The performance of the predictions was enhanced by 

tuning the hyperparameters of the investigated RF schemes using a GridSearchCV-based 

approach: 

1. The suggested RF model showed a high coefficient of determination of 0.9757 on the 

test set, indicating that it is highly accurate in forecasting. Additionally, no overfitting 

was generated, as concluded by the extremely low RMSE values on the training and 

testing sets. 

2. The generated model capacity to predict outcomes was contrasted with the one gen-

erated by previously proposed models in [34] and [59], which were: multivariable 

regression model (MLSR), multi-gen genetic programming (MGGP), and multivari-

able regression (MVR). According to the statistical analysis, the suggested RF model 

outperformed the current white-box models regarding relative errors and determi-

nation coefficients. 

3. Shap analysis was used to demonstrate the implemented RF’s strong integrity and 

reliability. 

This study can be expanded to predict other soil properties, such as those found with 

standard penetration tests (SPT), compaction testing, or triaxial tests. Moreover, the gen-

eralization capacity of the RF model could be further enhanced if a larger dataset with 
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more affecting factors can be acquired in the future. Therefore, future studies will concen-

trate on developing a larger dataset and considering more factors, such as time duration 

and admixture types. 

Finally, to popularize and apply the proposed model for practice, a web application 

(app) using this model was developed to help civil engineers to predict the UCS for pro-

jects [69]. This app can constitute a valuable tool, complementary or even alternative to 

experimental testing procedures, saving costs, time, and human resources. 
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