
TYPE Original Research
PUBLISHED 06 September 2023| DOI 10.3389/fcvm.2023.1224462
EDITED BY

Silvio Antoniak,

University of North Carolina at Chapel Hill,

United States

REVIEWED BY

István Kiss,

University of Pécs, Hungary

Zhenguo Zhai,

China-Japan Friendship Hospital, China

*CORRESPONDENCE

Szilvia Fiatal

fiatal.szilvia@med.unideb.hu

RECEIVED 17 May 2023

ACCEPTED 03 August 2023

PUBLISHED 06 September 2023

CITATION

Natae SF, Merzah MA, Sándor J, Ádány R,

Bereczky Z and Fiatal S (2023) A combination of

strongly associated prothrombotic single

nucleotide polymorphisms could efficiently

predict venous thrombosis risk.

Front. Cardiovasc. Med. 10:1224462.

doi: 10.3389/fcvm.2023.1224462

COPYRIGHT

© 2023 Natae, Merzah, Sándor, Ádány,
Bereczky and Fiatal. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.
Frontiers in Cardiovascular Medicine
A combination of strongly
associated prothrombotic single
nucleotide polymorphisms could
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Background: Venous thrombosis (VT) is multifactorial trait that contributes to the
global burden of cardiovascular diseases. Although abundant single nucleotide
polymorphisms (SNPs) provoke the susceptibility of an individual to VT, research
has found that the five most strongly associated SNPs, namely, rs6025 (F5
Leiden), rs2066865 (FGG), rs2036914 (F11), rs8176719 (ABO), and rs1799963 (F2),
play the greatest role. Association and risk prediction models are rarely
established by using merely the five strongly associated SNPs. This study aims to
explore the combined VT risk predictability of the five SNPs and well-known
non-genetic VT risk factors such as aging and obesity in the Hungarian population.
Methods: SNPs were genotyped in the VT group (n= 298) and control group (n=
400). Associations were established using standard genetic models. Genetic risk
scores (GRS) [unweighted GRS (unGRS), weighted GRS (wGRS)] were also
computed. Correspondingly, the areas under the receiver operating
characteristic curves (AUCs) for genetic and non-genetic risk factors were
estimated to explore their VT risk predictability in the study population.
Results: rs6025 was the most prevalent VT risk allele in the Hungarian population.
Its risk allele frequency was 3.52-fold higher in the VT group than that in the
control group [adjusted odds ratio (AOR) = 3.52, 95% CI: 2.50–4.95]. Using all
genetic models, we found that rs6025 and rs2036914 remained significantly
associated with VT risk after multiple correction testing was performed.
However, rs8176719 remained statistically significant only in the multiplicative
(AOR = 1.33, 95% CI: 1.07–1.64) and genotypic models (AOR= 1.77, 95% CI:
1.14–2.73). In addition, rs2066865 lost its significant association with VT risk
after multiple correction testing was performed. Conversely, the prothrombin
mutation (rs1799963) did not show any significant association. The AUC of
Leiden mutation (rs6025) showed better discriminative accuracy than that of
other SNPs (AUC= 0.62, 95% CI: 0.57–0.66). The wGRS was a better predictor
for VT than the unGRS (AUC= 0.67 vs. 0.65). Furthermore, combining genetic
and non-genetic VT risk factors significantly increased the AUC to 0.89 with
statistically significant differences (Z= 3.924, p < 0.0001).
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Conclusions: Our study revealed that the five strongly associated SNPs combined with non-
genetic factors could efficiently predict individual VT risk susceptibility. The combined model
was the best predictor of VT risk, so stratifying high-risk individuals based on their genetic
profiling and well-known non-modifiable VT risk factors was important for the effective
and efficient utilization of VT risk preventive and control measures. Furthermore, we urged
further study that compares the VT risk predictability in the Hungarian population using the
formerly discovered VT SNPs with the novel strongly associated VT SNPs.
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Introduction

Venous thrombosis (VT) is one of the three leading causes of

cardiovascular disease (CVD)-related mortality with a significant

genetic predisposition (1–3). It is a multifactorial trait that

contributes to the global burden of CVD (4–7). In Europe,

although overall CVD-related morbidity is decreasing, mortality

remains substantially high. CVD is the leading cause of mortality

in Europe, accounting for over 3.9 million deaths annually

(8–10). Furthermore, approximately 60 million CVD premature

deaths (death < 70 years) have been reported in Europe (10).

VT is a major health problem with a significant annual

incidence (7.62/100,000) and mortality (3.70/100,000) (11). A

higher burden of CVD-related mortality has been reported in

Central and Eastern Europe (8, 12). Hungary shares the highest

proportion of this mortality (8, 13). CVDs remain the most

prominent cause of death in Hungary (13). As of 2014,

approximately 35,000 women and 27,000 men have died from

CVDs annually, accounting for 55% and 45% of all deaths for

women and men, respectively (13). The age-standardized CVD

death rate in Hungary is more than double the European Union

(EU) average reported in 2014 (13). The availability of

prophylaxis could significantly avert this burden by targeting

high-risk individuals for treatment (11, 14). According to Rudolf

Virchow’s triad explanation (15), thrombosis is the result of three

major factors, namely, blood flow stasis (16, 17), endothelial

injury (18–20), and hypercoagulability (21). The inheritable

prothrombotic factors influence VT risk via the coagulation

process (21, 22), whereas the non-inheritable risk factors

influence VT risk either via stasis or endothelial injury (23, 24).

Various studies have established the impact of heritable factors

on VT risk (25–27). The incidence of repeated hospitalization due

to VT is twofold higher in people with affected families than that in

the general population (1–3). Although abundant single nucleotide

polymorphisms (SNPs) provoke the susceptibility of an individual

to VT (28–31), research has found that the five most strongly

associated SNPs, namely, rs6025 (Leiden mutation) in the F5

gene, rs1799963 (prothrombin G20210A) in the coagulation

factor 2 gene (F2), rs8176719 (non-O blood type) in the ABO

gene, rs2036914 in the coagulation factor eleven gene (F11), and

rs2066865 in the fibrinogen gamma gene (FGG), play the greatest

role in determining VT incidence and recurrence in genetically

vulnerable individuals (29, 32, 33).
02
The Leiden mutation is one of the most dominant inheritable VT

risk factors that increase the burden of VT in genetically vulnerable

individuals (34–36). The Leiden mutation/F5 prevalence is unevenly

distributed across Europe with an average prevalence of 4% in the

general population. The highest frequency is reported in

Southeastern Europe and Northern Europe, whereas the lowest

frequency is reported in Eastern and Western Europe (37, 38). The

Leiden mutation prevalence is highest in European descent

populations (3%–8%) (34, 39), followed by Caucasian Americans

(5%). However, it is highly rare in African Americans (1.2%) and

Asian-Americans (0.45%) (34) and absent in Africans (40, 41).

Similarly, the prothrombin gene mutation/F2, often known as the

G20210A mutation, is the second most prevalent inheritable VT

risk in Caucasians (2%–4%) (39), particularly those of European

ancestry (4%) and Caucasian Americans (2%). However, it is less

prevalent in African Americans, accounting for approximately 0.4%

(one in 250), and highly rare in Africans and Asians (39, 42).

Often, due to their coexistence and possible gene‒gene

interaction, the prothrombin gene mutation (rs1799963) and Leiden

mutation (rs6025) SNPs were studied together (43). Furthermore,

studies showed that the ancestral distribution of coagulation factor

11 (rs2036914) is similar in both Caucasians and African

Americans (44, 45). Studies indicated that O blood-type individuals

are at lower risk of VT than non-O blood-type individuals (46, 47),

who are at a higher risk of VT (48–51). In addition, Kinsella et al.

reported that the risk of venous thromboembolism (VTE) is higher

in African Americans and non-O blood-type individuals than that

in Caucasians and O blood-type individuals (52).

An individual who is a carrier of multiple variants is more

vulnerable to VT. Studies have indicated that the combination of

strongly associated VT SNPs [rs6025 (F5), rs1799963 (F2), rs8176719

(ABO), rs2036914 (F11), and rs2066865 (FGG)] poses a greater VT

risk than that risk occurring by an individual SNP (29, 53). The

genetic risk score (GRS) of strongly associated VT variants results in

the greatest risk compared with a larger number of SNP

combinations. De Haan et al. (29) showed that the VT risk prediction

of the 5-SNP risk score is equivalent to that of the 31-SNP risk score.

In addition, studies have indicated that dual exposure to VT risk

factors (genetic and non-genetic) increases the susceptibility of an

individual to VT (4, 29). Aging and obesity are well-known non-

inheritable VT risk factors that hasten the onset of VT (29). As a

result of multiple anatomical and pathophysiological changes, the

elderly are prone to age-related cardiovascular morbidity and
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mortality (54–56). Aging plays a major role in the higher incidence of

VT risk (1%) in elderly individuals (19, 54–57). The diminished

efficiency of the calf muscle pump due to aging could lead to

peripheral blood reflux and stasis resulting in thrombosis formation

(54). Furthermore, age-related endothelial dysfunction is also a

contributing factor to the higher incidence of VT in elderly

individuals compared with that in younger individuals (19). Valve

thickness, muscle fiber atrophy, and reduced endothelial

anticoagulant properties are some pathophysiological changes that

increase the VT risk among elderly individuals (54, 55).

Correspondingly, obese individuals are at higher VT risk than

normal-weight individuals. Previously conducted studies showed

that the VT risk was two- to sixfold higher in obese individuals than

that in normal-weight individuals [body mass index (BMI) = 20–

24.9 kg/m2] (58–62). A study indicated that the VT risk was higher

among aged (>50 years old) and obese individuals [61).

Stratifying higher-risk individuals based on their genetic profiling

for thromboprophylaxis is important for efficient utilization of the

available resources (29). Furthermore, the possibility of reducing

unexpected consequences of massive supplementation of prophylactic

treatment would be high (63). Although the 5-SNP impact on VT risk

is huge, association and risk prediction models are rarely established

by using merely five strongly associated SNPs. No study has yet been

conducted to explore the VT risk predictability of the combined five

strongly associated prothrombotic SNPs in the VT subjects from the

Hungarian population. Consequently, this study aims to explore the

VT risk predictability of the combined five SNPs [rs6025 (F5 Leiden),

rs2066865 (FGG), rs2036914 (F11), rs8176719 (ABO), and rs1799963

(F2)] in the Hungarian population.
Methods and materials

Study population

A total of 698 subjects were involved in the case‒control study, of

which 298 were VT patients and 400 were healthy controls. The VT

patients were recruited consecutively by the Division of Clinical

Laboratory Science, Department of Laboratory Medicine, Faculty of

Medicine, University of Debrecen during a 1-year period. VT

diagnosis was established by standard diagnostic modalities, such as

color Doppler ultrasound and phlebography at the Department of

Internal Medicine. The controls were selected from the general

population via a comprehensive health survey (see survey details and

the created database elsewhere) and were free from VT according to a

self-report questionnaire conducted 12 months prior to the survey (64).
DNA isolation

DNA was extracted from the peripheral blood using a MagNA

Pure LC system (Roche Diagnostics, Basel, Switzerland) with a

MagNA Pure LC DNA Isolation Kit–Large Volume according to

the manufacturer’s instructions. The extracted DNA was eluted

in a 200 μl MagNA Pure LC DNA Isolation Kit–Large Volume

elution buffer.
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SNP selection and genotyping

Based on the genome-wide association study (GWAS) results

(30, 65, 66) and our previously conducted studies (4, 67), we

identified and considered the five strongly associated

prothrombotic SNPs, namely, rs6025 (F5), rs2066865 (FGG),

rs2036914 (F11), rs8176719 (ABO), and rs1799963 (F2), in our

current study. We considered them due to their confirmed large

effect size and potential predictability of inheritable VT risk (29,

67). The assay design and genotyping were performed by the

Karolinska University Hospital, Stockholm, Sweden, Mutation

Analysis Core Facility (MAF). A MassARRAY platform

(Sequenom, CA, USA) with iPLEX Gold chemistry was used for

genotyping. Quality control, validation, and concordance analysis

were conducted by the MAF.
Genetic risk score

The weighted GRS (wGRS) and unweighted GRS (unGRS)

were computed to identify the combined effect of the included

SNPs on VT risk. In the GRS, the individuals were assigned

based on the total number of risk-increasing alleles.

Consequently, “0,” “1,” and “2” codes were given for the

absence, heterozygosity, and homozygosity of risk alleles,

respectively. When the risk allele was found to be protective,

the coding for the homozygous risk allele became “0” and “2”

for the other homozygous allele (67). Accordingly, the unGRS

was simply calculated by adding all risk alleles in a given locus

with the assumption that all alleles had the same effect. To

comprehend the stronger relationship of some SNPs with VT,

we also calculated the wGRS by assigning weights to the risk

allele of each SNP corresponding to the logarithm of the

average risk estimates reported in the previously conducted

genetic association study (29).

Moreover, to determine which SNP is more influential in its

discriminatory accuracy of the area under the receiver operating

characteristic curve (AUC), we added each SNP one by one into

a model. Therefore, we started with the SNP with the highest

odds ratio (OR), i.e., the Leiden mutation (rs6025) in the F5

gene, and assessed whether adding more SNPs in a model could

improve the AUC. We continued adding all other SNPs into a

model until we verified that adding more SNPs into a model

could not reveal any significant discriminatory accuracy.
Non-genetic VT risk factors

We considered age (≥60 years), sex, and obesity (BMI≥ 30 kg/

m2) as non-genetic VT risk factors. We included each non-genetic

risk factor and their combination with genetic VT risk factors into

a model to verify the difference in the AUC and their VT risk

predictability in the study population. A logistic regression model

was used to generate a combined risk score of genetic and non-

genetic VT risk factors.
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Statistical analysis

Statistical tests were computed using the PLINK (version 1.9)

and IBM SPSS (version 26.0) statistical software. The Mann‒

Whitney U-test was used to compare the age, BMI, and GRS

distribution in the study population. The Shapiro–Wilk

normality test was used to test the distribution of quantitative

variables. The Hardy–Weinberg equilibrium (HWE) and risk

allele frequency differences between the VT group and control

group were estimated using the X2 test. The association between

the five SNPs and VT risk was assessed by the OR with their

respective 95% confidence interval (CI) under all genetic models,

namely, the multiplicative, additive, dominant, recessive, and

genotypic models. Likewise, a logistic regression analysis was also

used to compute the OR with 95% of individual SNPs and

genetic, non-genetic, and combined VT risk factors.

In addition, the area under the receiver operating characteristic

(ROC) curve was determined to assess how well its score classifies

the VT group and control group. In general, the AUC ranged from

0.5 (no discrimination between the VT group and control group)

to 1.0 (perfect discrimination). We compared the AUCs of the

genetic, non-genetic, and combined risk models. The SPSS IBM

version 26.0 was used to calculate the ROC curves and AUCs. The

Bonferroni multiple testing correction was employed to prevent

multiple comparison problems (0.05/5, p < 0.01). Statistically

significant variables were declared at a conventional p-value of 0.05.
Ethical approval

The Hungarian Scientific Council on Health Research

committee approved the protocol (61327-2017/EKU). All

participants provided written consent before their participation.
Results

Characteristics of the study participants

In total, 698 subjects were enrolled in the case–control study, of

which 298 were VT patients and 400 were healthy controls. All

subjects with complete genotypic and covariate data were

considered for the analyses. The proportion of male participants
TABLE 1 Marker check of the selected SNPs in the study.

Gene F5 FGG
rs ID rs6025 rs2066865

BP 169549811 154604124

CHR 1 4

Alleles (major: minor) C:T G:A

Genotype % 100% 100%

MAF 0.1254 0.2536

O(HET) 0.2077 0.3954

E(HET) 0.2193 0.3786

HWE p-value 0.1665 0.2716

MAF, minor allele frequency; O(HET), observed heterozygosity; E(HET), expected hete
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(51%) in the VT group was higher than that in the control group

(44%). The age distribution of the VT group was shifted toward

the elderly group, and their mean age was significantly higher

than that of the control group (63.4 ± 16.4 vs. 43.8 ± 12.6 years,

p < 0.001) (Supplementary Figure S1). However, the distribution

of BMI values (kg/m2) did not differ significantly (28.2 ± 8.2 vs.

27.2 ± 5.5, p = 0.76). The marker check and detailed information

of each SNP, including rs (SNP identifier), base pair position

(BP), chromosome number (CHR), and major and minor alleles,

are listed in Table 1.
Risk allele frequency comparison in the
study population

The genotypic results were available for 698 subjects: VT

patients (n = 298) and healthy controls (n = 400). All SNPs were

tested to determine whether the observed allele frequencies were

in accordance with the HWE; no significant deviation from the

HWE was detected in the study population (Table 1). The risk

allele frequencies of the five prothrombotic SNPs analyzed in the

study are listed in Table 2. The risk allele frequencies of rs6025

(F5), rs2036914 (F11), and rs8176719 (ABO) were higher in the

VT group than those in the control group, and the differences

remained statistically significant after multiple testing correction

was performed (p < 0.01) (Table 2).

In addition, we also computed the protective allele frequency of

the ABO gene (DEL); its frequency was higher in the control group

than that in the VT group (Supplementary Table S1).
Association between SNPs and VT risk in the
study population using genetic association
models

The association strengths regarding VT risk using complete

genetic association models (multiplicative, additive, dominant,

recessive, and genotypic models) were estimated. Only the Leiden

mutation (rs6025) and F11 (rs2036914) remained significant after

adjustment for multiple testing correction (p < 0.01). In

particular, the Leiden mutation variant strongly influenced the

VT risk in the Hungarian population (p < 0.001): among the

patients with VT due to the Leiden mutation, the OR of VT risk
F11 ABO F2
rs2036914 rs8176719 rs1799963

186271327 133257521 46739505

4 9 11

T:C C:DEL G:A

100% 100% 100%

0.5745 0.4441 0.02436

0.4957 0.4814 0.04871

0.4889 0.4938 0.04752

0.7569 0.5396 1

rozygosity.
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TABLE 2 Risk allele frequency comparison of the VT group and control group in the Hungarian population.

Gene SNP A1 Cases Controls A2 X2 OR (95% CI) p-value

(n = 298) (n = 400)
F5 rs6025 T 0.203 0.0675 C 57.21 3.52 (2.50–4.95) <0.001*

FGG rs2066865 A 0.2836 0.2312 G 4.94 1.32 (1.03–1.68) 0.026

F11 rs2036914 C 0.6191 0.5412 T 8.47 1.38 (1.11–1.71) 0.003*

ABO rs8176719 C 0.5956 0.5262 DEL 6.66 1.33 (1.07–1.64) 0.001*

F2 rs1799963 A 0.0302 0.02 G 1.50 1.53 (0.77–3.02) 0.221

A1, risk allele; A2, reference allele; X2, chi-square.

*p < 0.01 considered significant after multiple correction testing.

Natae et al. 10.3389/fcvm.2023.1224462
ranged from 3.25 (heterozygous genotypic for risk variant; OR =

3.25, 95% CI: 2.22–4.76) to 19.67 (OR = 19.6, 95% CI: 2.57–

150.4) in the recessive model/ those who were homozygous for

risk variant.

The rs8176719 (ABO) remained statistically significant only in

the multiplicative (OR = 1.33, 95% CI: 1.07–1.64) and genotypic

models (OR = 1.77, 95% CI: 1.14–2.73); nevertheless, it lost its

significance in other models after adjustment for multiple testing

correction. Similarly, the rs8176719 (ABO) protective variant

remained statistically significant only in the multiplicative model

(OR = 0.75, 95% CI: 0.61–0.93) (Supplementary Table S2). In

addition, the FGG (rs2066865) expressed a significant association

with VT risk in the multiplicative, additive, and dominant

models before multiple testing correction; however, it lost its

significance after adjustment was performed. Conversely, the F2

(rs1799963) did not show any statistically significant association

with VT directly with any of the used models (Table 3).
Comparison of genetic risk scores in the
study population

The unGRS and wGRS of the five SNPs were computed for the

298 VT patients and 400 healthy controls. The unGRS ranged from
TABLE 3 Genetic association test results in the VT group and control group o
risk factors in the Hungarian population.

Model Gene F5 FGG

SNP rs6025 rs206686
Multiplicative X2 57.21 4.94

OR (95% CI) 3.52 (2.50–4.95) 1.32 (1.03–1.

p <0.001 0.026

Additive X2 54.35 5.17

OR (95% CI) 3.52 (2.50–4.95) 1.32 (1.03–1.

p <0.001 0.02302

Dominant X2 49.61 4.32

OR (95% CI) 3.67 (2.52–5.33) 1.38 (1.02–1.

p <0.001 0.038

Recessive X2 16.07 2.1

OR (95% CI) 19.67 (2.57–150.4) 1.61 (0.84–3.

p <0.001 0.147

Genotypic X2 54.35 5.18

OR (95% CI) 3.25 (2.22–4.76)a 1.81 (0.94–3.

p <0.001 0.075

aCT (heterozygous for a risk variant), NA = the value of one cell is 0, i.e., <5; hence, th
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0 to 6 (3.46 ± 1.31) and 0 to 7 (2.77 ± 1.28) for the VT and control

groups, respectively (Figure 1A). The wGRS ranged from 0 to 4.6

(1.93 ± 0.97) and 0 to 4.7 (1.37 ± 0.78) for the VT and control

groups (Figure 1B).
Association of GRS with VT risk

The distributions of other covariate variables including the

wGRS and unGRS were significantly distinct (p < 0.001) between

the two groups (Supplementary Table S3). The test revealed

significant differences (case vs. control) in age (median = 65; 44,

p < 0.001), BMI (median = 28.72; 26.75, p < 0.001), unGRS

(median = 3; 3, p < 0.001), and wGRS (median = 1.79; 1.34, p <

0.001). Although the median unGRS values for the VT group

and control group were similar, a larger unGRS value was more

frequent in the VT group than in the control group.

Table 4 lists the multivariate logistic regression analysis results

of covariate variables adjusted for sex and age. Of the well-known

non-genetic VT risk factors, age and obesity were significantly

associated with VT risk in the study population, which was

higher in the VT group than that in the control group (Table 4).

The VT risk was 12.8 times higher in the elderly subjects aged

≥60 years than that among the subjects aged below 60 years
f the study population: implication to determine the inheritable VT disease

F11 ABO F2

5 rs2036914 rs8176719 rs1799963
8.47 6.66 1.50

68) 1.38 (1.11–1.71) 1.33 (1.07–1.64) 1.53 (0.77–3.02)

0.004 0.001 0.221

8.59 6.50 1.53

68) 1.38 (1.11–1.71) 1.33 (1.07–1.64) 1.53 (0.77–3.02)

0.003 0.011 0.216

5.71 4.88 1.53

86) 1.64 (1.09–2.47) 1.54 (1.04–2.26) 1.543

0.017 0.03 0.215

5.72 3.96

08) 1.47 (1.07–2.03) 1.39 (1.00–1.91)

0.017 0.047 NA

8.64 6.60 1.534

51) 1.96 (1.24–3.08) 1.77 (1.14–2.73) 1.54 (0.77–3.07)

0.013 0.01 0.215

e X2 test is not applicable.
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FIGURE 1

Unweighted (A) and weighted (B) GRS distribution comparison among the VT group and the control group of the Hungarian population.

TABLE 4 Association of covariate variables with VT risk in the Hungarian population.

Variables VT riskb VT riskc

ß p-value COR (95% CI) AOR (95% CI)d AOR (95% CI)e

Sex (male)a 0.271 0.077 1.31 (0.97–1.77) — 1.16 (0.84–1.61)

Age≥ 60 years 2.468 <0.001 11.79 (7.96–17.49) 12.83 (8.38–19.63)* —

BMI (≥30 kg/m2) 0.850 <0.001 2.34 (1.59–3.45) 1.41 (0.88–2.26) 2.28 (1.51–3.42)*

unGRS 0.412 <0.001 1.51 (1.34–1.71) 0.88 (0.65–1.18) 0.94 (0.72–1.21)

wGRS 0.729 <0.001 2.07 (1.72–2.50) 2.69 (1.74–4.19)* 2.24 (1.51–3.32)*

aFemale is a reference.
bCrude odds ratio (COR).
cAdjusted odds ratio (AOR).
dAdjusted for sex.
eAdjusted for age.

*p-value < 0.0001.
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(AOR = 12.83, 95% CI: 8.38–19.63). Similarly, the VT risk was 2.3

times higher in the obese subjects (BMI > 30 kg/m2) than that in

the normal-weight subjects (AOR = 2.28, 95% CI: 1.51–3.42).

Furthermore, the wGRS remained statistically significant after we

adjusted for both sex and age (AOR = 2.69, 95% CI: 1.74–4.19

and AOR = 2.24, 95% CI: 1.51–3.32, respectively). However, the

unGRS lost its statistical significance (AOR = 0.88, 95% CI: 0.65–

1.18) in the multivariate regression analysis model (Table 4).
FIGURE 2

The change in the discriminatory accuracy of the AUC of the genetic
risk score after adding each SNP into a model; we started with the
Leiden mutation (rs6025) with the highest effect size and ended with
rs2036914 (F11) with the lowest effect size of the five SNPs. The
addition of each SNP increases the AUC value after F2 (rs1799963).
VT risk prediction in the study population

We calculated the ROC curve to assess how well the score

classified VT in the case and control groups. The AUC of the

SNPs ranged from 0.51 (95% CI: 0.47–0.55, p = 0.64) for

rs1799963 in F2 to 0.62 (95% CI: 0.57; 0.66, p < 0.001) for rs6025

in F5. The discriminative accuracy of the model improved by

adding each SNP (Figure 2). We started with the Leiden

mutation (rs6025) with the highest effect size and ended with

rs2036914 (F11) with the lowest effect size among the five SNPs.

The addition of each SNP increased the AUC after F2 (rs1799963).

The AUC of the 5-SNP risk score was 0.68 (95% CI: 0.64; 0.72).

The variability proportion explained by the Leiden mutation
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(rs6025) was higher than that of the 5-SNP risk score (8% vs.

7%). Furthermore, approximately 39% of the variability observed

was attributed to the combination of genetic and non-genetic

risk factors, which is higher than that of those factors
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TABLE 5 Venous thrombosis risk predictability of the Leiden mutation,
genetic risk, non-genetic risk, and combined model in the Hungarian
population.

Variables r2 N = 698

AUC (95% CI) p-value
Leiden mutation risk modela 0.08 0.62 (0.57–0.66) <0.0001

Genetic risk modelb 0.09 0.68 (0.64–0.72) <0.0001

Non-genetic risk modelc 0.31 0.85 (0.82–0.88) <0.0001

Combined modeld 0.39 0.89 (0.86–0.91) <0.0001

Differencee — 0.039 (0.02–0.059) <0.0001

r2: variability explained by each variable.

A total of 298 VT patients and 400 healthy controls with complete genotypic and

covariate data were considered during the analysis.
aLeiden mutation, the most prevalent inheritable VT risk variant in the study

population.
bGenetic risk model: weighted GRS computed from the five SNPs (rs6025,

rs2066865, rs2036914, rs8176719, and rs1799963).
cNon-genetic risk model: age [5-year interval, sex, and BMI (<25, 25–30, and

≥30 kg/m2)].
dCombined risk model: genetic risk model plus non-genetic risk model.
eDifference between the combined and non-genetic risk models.

FIGURE 3

ROC curves for combined (genetic and non-genetic), genetic (five
prothrombotic SNPs), and non-genetic (age, sex, BMI) risk models.
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independently (Table 5). Similarly, the ROC curve for the weighted

5-SNP risk score had an AUC of 0.68 (95% CI: 0.64–0.72), i.e.,

there was a 68% probability that a randomly selected VT patient

will have a higher score than that of a randomly selected control

subject. The wGRS was a better predictor for VT than the

unGRS (AUC = 0.65, 95% CI: 0.60–0.69).

There was a difference between the discriminative accuracy

of the 5-SNP risk score in men (AUC = 0.68, 95% CI: 0.62–0.74,

p < 0.001) and women (AUC = 0.61: 95% CI: 0.55–0.67, p <

0.001). Moreover, the AUC of the wGRS of the 5-SNPs was

significantly higher in men (AUC = 0.71, 95% CI: 0.65–0.76,

p < 0.001) than that in women (AUC = 0.63, 95% CI: 0.57–

0.69, p < 0.001).
Risk prediction based on a combination of
genetic and non-genetic risk factors

We also evaluated the discriminative accuracy of well-known

non-genetic VT risk factors such as age, sex, and obesity to

explore their independent and combined VT risk predictability in

the study population. The independent AUCs of age and obesity

were 0.84, p < 0.0001, and 0.59, p < 0.001, respectively. The

combination of all well-known VT risk factors changed the

discriminative accuracy of the AUC to 0.85, p < 0.000. Similarly,

when we added the non-genetic risk factors into the genetic risk

factors, the AUC significantly projected to 0.89 (95% CI: 0.86–

0.91) compared to that in the genetic (AUC = 0.68) or non-

genetic risk factor predictability (AUC = 0.85; p < 0.0001)

(Figure 3). The AUC difference in the combined and non-

genetic risk factors was statistically significant (AUC = 0.039, 95%

CI: 0.02–0.059, p < 0.0001). There was no significant AUC

difference between men and women in the non-genetic (men:

AUC = 0.81, 95% CI: 0.76–0.86 vs. women: AUC = 0.82, 95% CI:

0.78–0.87) and combined risk score (men: AUC = 0.87, 95% CI:

0.83–0.91 vs. women: AUC = 0.86, 95% CI: 0.82–0.90) models.
Frontiers in Cardiovascular Medicine 07
Discussion

Although there are abundant SNPs that provoke VT events in

genetically vulnerable individuals, the contributions of the five

strongly associated SNPs, namely, rs6025 (F5), rs2066865 (FGG),

rs2036914 (F11), rs8176719 (ABO), and rs1799963 (F2), to VT

risk is immensely high (29, 32, 33). Moreover, previously

conducted studies demonstrated the importance of these five

prothrombotic SNPs in the relapse of inheritable VT (29, 32, 33).

Consequently, we aimed to explore the combined genetic risk

predictability of strongly associated VT SNPs and well-known

non-genetic VT risk factors in the Hungarian population. Thus,

stratifying high-risk individuals based on their genetic profiling

might help for the efficient utilization of scarcely available

thromboprophylaxis, which might reduce the premature death

attributed to VT and CVDs.

In our present study, we considered five VT-associated SNPs to

explore the genetic background of VT risk in the Hungarian

population. Only the three SNPs, namely, rs6025 (F5), rs2036914

(F11), and rs8176719 (ABO), remained statistically significant after

adjustment for multiple testing correction (p < 0.01). The highest

VT risk was detected among the Leiden mutation carriers/rs6025

(OR = 3.52, 95% CI: 2.50–4.95). Its allele frequency was

approximately threefold higher in the VT group (20%) than that

in the control group (6.8%). Our findings were consistent with the

finding of the previously conducted studies showing that the odds

of VT risk are 3.5 (28) and 4.38 times higher for rs6025 (F5)

variant carriers than those of non-carriers (68).

Moreover, numerous studies suggest that the Leiden mutation is

vastly prevalent in Caucasians, particularly those of European

descent. It is one of the most influential inheritable VT risk

factors that increase the burden of VT in genetically vulnerable

individuals (34–36). These findings support our study’s result that
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F5 is highly prevalent in the case group (20%). Furthermore, it was

strongly associated with the trait in all genetic association models.

This highlights the fact that the Leiden mutation is an

independent predictor of VT risk (28, 35, 69) and its contribution

to the burden of VT is remarkable (69), particularly for genetically

susceptible individuals and Caucasians (34). Likewise, the risk

allele frequency and VT risk for rs2036914 (F11) and rs8176719

(ABO) were higher in the case group even after adjustment for

multiple testing correction. A previously conducted study revealed

that F11 (rs2036914) is an independent predictor of VT (70),

which is supported by our result that the risk was 1.38 times

higher in the case group than that in the control group. Studies

showed that VT risk distribution due to F11 (rs2036914) is similar

in Caucasians and African Americans (44, 45).

The allele frequency of the ABO SNP (rs8176719) was more

prevalent in the control group (47.4% vs. 40.4%). In addition, it

was revealed that the VT risk was lower (OR = 0.75, 95% CI:

0.61–0.93) among the subjects with the rs8176719 variant.

Furthermore, the VT risk was 1.33 times higher in the risk variant

carriers. Studies indicated that the O blood-type individuals are at

a lower VT risk compared with the non-O blood-type individuals

(46, 47). On the other hand, several studies showed that non-O

blood-type individuals (A, AB, and B) were at a higher VT risk

compared with non-O blood-type individuals (48–51). Our

findings were also consistent with those of the previously

conducted studies. Fang et al. reported that the VTE risk is higher

in African Americans and non-O blood-type individuals than that

in Caucasians and O blood-type individuals (52).

Although the risk allele frequencies and VT risk were not

distinct in the case of prothrombin mutation (rs1799963), it was

the second most prevalent risk variant in the Hungarian

population. The reason for the lack of statistical significance

despite the large OR might be attributed to the limited number

of our VT patients. Our findings were also in line with those of

the previously conducted studies showing that rs1799963 is more

prevalent in European descent populations than in others

(Americans, African Americans, Asians, and Africans) (23).

Several studies showed that approximately two- to fourfold VT

risk was attributed to a hypercoagulability state that resulted

from a mutation in the prothrombin gene/rs1799963 (35, 71, 72).

Studies indicated that pooled variants have more impact on VT risk

determination than a single variant (29, 53); consequently, we computed

the wGRS and unGRS to determine the VT risk in the study population.

Our findings showed that the wGRS is an independent predictor of VT

risk in the study population, and its value was 2.37 times higher in the

VT group than in the control group. Previously conducted studies also

supported our findings (29, 53).

The impact of non-genetic risk factors on VT risk is also

appreciable. Our study showed that VT was more prevalent in

elderly (≥ 60 years) subjects (58.1% vs. 10.5%; p < 0.0001).

Likewise, the odds of VT risk for elderly subjects were 12-fold

higher than that of those aged <60 years. The VT risk increases

with age due to different factors, such as anatomical (54),

pathophysiological (54–57), and hormonal derangement (73).

Consequently, it hastens and increases the vulnerability of elderly

subjects to VT risk and other CVDs (19, 55–57). Furthermore, our
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findings showed that the VT risk is 2.28 times higher in the obese

subjects than that in the normal-weight subjects. This finding is in

line with those of the previously conducted studies that showed

that obesity is an independent predictor of VT risk (58–62).

The ability to predict the risk of a certain event before its

occurrence is important in clinical epidemiology. Precise risk

prediction helps control an event at as early a stage as possible

(74–77) and offers to use the available resources effectively and

efficiently (74–77). We used the ROC curves to establish

individual and combined VT risk predictability of the SNPs and

non-inheritable VT risk factors to develop a risk stratification tool.

In our study, the highest AUC was obtained for the Leiden

mutation (AUC = 0.62), whereas the lowest AUC was obtained

for the prothrombin mutation/F2 (0.52). The addition of each

SNP into the model after F5 increased the AUC in general. Our

finding is in line with that of the studies showing that adding

more SNPs into the model increases the AUC to a certain extent,

but after a certain level, the AUC does not change, despite

adding more explanatory variables into the model (29, 78).

We also found that the wGRS is a better predictor of VT risk

than individual SNPs (0.68 vs. 0.62) and their combination with

non-genetic risk factors yields a larger AUC with higher

discriminatory accuracy (AUC = 0.89). This finding is consistent

with that of the previous studies showing that the combination of

clinical and genetic risk factors increases the VT risk eight times

more than either the genetic or the clinical model alone (79, 80).
Strengths and limitations of our study

Our study tried to verify the VT risk predictability in the

Hungarian population only by using strongly associated VT

SNPs [rs6025 (F5), rs1799963 (F2), rs8176719 (ABO), rs2036914

(F11), and rs2066865 (FGG)] mainly relating to the recurrence

and higher incidence of VT risk and well-known non-genetic VT

risk factors (age, obesity, and sex), which helped distinguish the

higher-risk individuals for the prevention and control of VT in

the study population. Furthermore, our study indicated the

possibility of efficiently and effectively utilizing the available

resource for risk prediction in the given population. However,

our study lacked the comparison of formerly identified strongly

associated VT SNPs with the novel loci, which are strongly

associated with VT risk as well (66, 81–83). As a result, we urged

further study that considers the novel and strongly associated VT

SNPs and the formerly identified SNPs and their comparison on

the VT risk predictability in the Hungarian population.

Altogether, the Leiden mutation, F11, and ABO risk alleles are

highly prevalent and strongly determine the VT risk in the

Hungarian population. The pooled genetic risk variants are more

influential than a single variant alone. The combined model is

the best predictor of VT risk, so stratifying high-risk individuals

based on their genetic profiling and well-known non-modifiable

VT risk factors is important for the effective and efficient

utilization of VT risk preventive and control measures.

Furthermore, our study lacks the comparison of formerly

identified VT SNPs with the novel SNPs, which are strongly
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associated with VT risk. This might provide new insight into the

VT risk and its determinants in the Hungarian population. As a

result, we urged further study that considers the novel and

strongly associated VT SNPs and the formerly identified SNPs

and their comparison on the VT risk predictability in the

Hungarian population.
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