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ABSTRACT Edge-aware smoothing is an essential tool for computer vision, graphics and photography.
In this paper, we develop a new and efficient local weighted average filter for edge-aware smoothing. The
proposed filter can use guidance information which permits an iterative filtering process. Since the weights
of the proposed filter depend on the local variance, the implementation requires linear filters only, leading to
O(Npix) computational complexity. We also present statistical analysis and simulations which provides new
insights into its computational efficiency and its relationship with the bilateral filter. The performance of the
proposed filter is comparable to those state-of-the-art filters in many applications including: edge-preserving
smoothing, compression artifact removal, structure separation, edge extraction, non-photo realistic image
rendering, salience detection, detail magnification and multi-focus image fusion.

INDEX TERMS Edge-aware smoothing, Bilateral filter, Guided filter, Detail magnification, Multi-focus
image fusion.

I. INTRODUCTION

Filters which smooth image details are essential tools for
many low-level vision applications [1]. Such filters have been
historically developed based on linear time-invariant (LTI)
systems [2]. LTI filters, such as the widely used Gaussian
filter, do not consider edges or boundaries of objects. As
a result of this obliviousness to edges, LTI filters produce
artifacts such as halo and blurriness. To tackle this problem,
edge-aware filters (EAF) [3] which are based on non-linear
techniques have emerged as powerful tools for a wide range
of applications in image processing and computer vision [4]–
[10]. Typical applications include: texture smoothing [7],
[9]–[12], non-photo-realistic rendering [4], [6], [9], clip-art
compression artifact removal [6], [11], flash/no-flash image
denoising [8], detail magnification [6], [11], [13], edge ex-
traction [6], [7], [14], tone mapping [4], [6], multi-focus
image fusion [15], [16], salient object detection, texture
enhancement [7], and image vectorization [7]. Since there are
many publications on EAF, we will adopt and enhance some
of the previously suggested categorizations in the literature
[17]. More specifically, EAF can be classified into four
categories: local, global, transform domain, and data-driven.

Local filters model an output pixel as a weighted average
of the surrounding pixels as follows:

J(m) =
1∑

w(n,m)

∑
n∈Ωm

w(n,m)I(n) (1)

where w(n,m) is a weight function measuring the similarity
between two pixels at locations n and m, I(n) is the pixel
intensity at the location n of the input image I , and Ωm
denotes the set of pixels in the neighbourhood of pixel I(m).
Generally speaking, local filters differ in the way their weight
functions are defined. Many filters fall in this category, in-
cluding the bilateral filter (BF) [2], the guided filter (GF)
[8] and its many variants [18]–[23], and the Bayesian model
averaging filter (BMA) [24]. Some local filters such as the
guided filter are popular due to their computational efficiency
[17]. On the other hand, other local filters such as the bilateral
filter are computationally expensive due to the non-linearity
in the weight.

Global filters are usually the product of minimizing an
image level objective function of the following form:

J = arg min
J

D(I, J) +R(J) (2)

where D(I, J) is a measure of the distance between the
input image I and the output image J , and R(J) is the
regularizer that encodes the filter designer’s knowledge about
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the expected output image J . Global filters can be formulated
through either a variational model or a Bayesian estimation
model. The optimization problem can be convex or non-
convex, continuous or discrete. Example of global filters in
the literature include the weighted-least squares filter (WLS)
[4], L0 filter [6], relative total variation (RTV) filter [7], the
region-covariance filter (RC) [25], the static-dynamic filter
[26], and the iterative global optimization filter (IGO) [27].

Transform domain filters can be summarized in the follow-
ing general model:

J = T −1 {f(T {I})} (3)

where T and T −1 are the forward transform and inverse
transform operations, and f : R → R is usually a point-
wise nonlinear function. Filters in this category include the
classic Wiener filter [3], edge-avoiding wavelets [28], guided
wavelet shrinkage [29], mixed-domain filter [30], and the do-
main transform filter [5]. A related type of filters are based on
multi-resolution techniques. Examples of such filters include
the local-Laplacian filter [31] and mixed-Domain filter [30].

A more recent attempt has been towards taking a machine
learning approach [32] in which the image filtering process
is formulated as a parametric model in the form of a deep
neural network. Parameters of the model are learned from a
huge data set of image patches. The filtering techniques in
this group can generally be sub-categorized into two groups:
learned priors [33], [34] and end-to-end learned models [35],
[36].

This work is partly motivated by recent developments in
edge-aware filtering, especially those based on the idea of
guided filter [8]. An intriguing question is: can we develop
a new local weighted average filter in the form of equation
(1)? The new filter should retain the computational efficiency
of the guided filter, and should avoid the computational
complexity of the bilateral filter. The main contributions of
this paper summarized below aim to answer this question.
• We develop a new statistically motivated local weighted

average filter. The intuition behind the proposed filter
is that a larger weight should be given to a pixel in a
flat area, while a smaller weight should be given to a
pixel in an edge or highly textured area. The variance
of the patch can be used to measure the flatness and
the weight is thus defined as a decreasing function of
the patch variance. We then adapt this filter to use the
bilateral weight, guidance image [37], and the idea of
rolling guidance [10].

• We show that the proposed filter is related to the bilateral
filter [2] in that the range weight is calculated by the
patch variance. The patch variance is used to measure
the similarity between two pixels.

• We further show that the proposed filter not only retains
the same O(Npix) computational complexity as that of
the guided filter, but also produces comparable or better
results in a wide range of applications where edge-aware
filters are required.

The organization of this paper is as follows. We first review
the basic idea of the guided filter in Section II, which provides
a foundation for the development of the proposed filter. In
Section III, we present the theoretical development of the
proposed filter as well as a detailed discussion on its proper-
ties such as the computational complexity and its relationship
with the bilateral filter. In Section IV, we present examples of
typical applications of the proposed filter including: texture-
structure separation, detail magnification, multi-focus image
fusion, edge-detection, compression artifact removal, and
salient object detection. We also compare the performance
of the proposed filter with related state-of-the-art filters [4]–
[11], [18], [26], [27]. In Section V, we present a summary of
the main idea of the proposed filter and its applications.

II. THE GUIDED FILTER AND ITS WEIGHTED VERSION
We briefly review the main idea of the guided filter and
its weighted version in this section. We use the following
notation. The image to be processed and the guidance image
are represented as I and G, respectively. An image patch
consists of pixels from a square neighborhood. The set of
location indices for pixels in the patch centered at location
k is denoted Ωk. The number of pixels in the patch is
N = |Ωk|. A pixel in the patch is denoted I(nk) where
nk ∈ Ωk is the location index within the patch. We also
define the following mean-notation:

µI(k) =
1

N

N∑
nk=1

I(nk) (4)

Similarly, we define µG(k) as the corresponding patch mean
for image G, µGI(k) as the patch mean for the pixel-wise
product imageG(nk)×I(nk), and µGG(k) as the patch mean
of the pixel-wise square of image G(nk)×G(nk).

Using these notations, we can define the patch variance as

σ2
G(k) = µGG(k)− µ2

G(k) (5)

and define the patch covariance as

covGI(k) = µGI(k)− µG(k)µI(k) (6)

There are two main ideas in the original guided filter: patch
modelling and model averaging. In patch modelling, a linear
model is assumed for pixels in the patch

J(nk) = a(k)G(nk) + b(k) (7)

The two model parameters a(k) and b(k) are determined
through a regularized optimization

{a(k), b(k)} = min
{a(k),b(k)}

N∑
nk=1

(I(nk)− J(nk))
2

+ εa2(k)

(8)
It can be shown that the results are
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a(k) =
covGI(k)

σ2
G(k) + ε/N

(9)

and
b(k) = µI(k)− a(k)µG(k) (10)

Once the model parameters are determined, we can use the
model to generate the filter result. The key point is that a pixel
I(m) belongs to N patches. For example, let m ∈ Ωk. The
kth patch model generates a result

Jk(m) = a(k)G(m) + b(k) (11)
= µI(k) + a(k)G(m)− a(k)µG(k) (12)

Therefore, there are N results due to N patch models. Let
Ωm denote the set of patch indices such that the pixel I(m)
is in the patch k ∈ Ωm. Model averaging is a principled
technique for combining these results. The original guided
filter takes the simplest form of model averaging by taking
an average of the results

J(m) =
1

N

N∑
k=1

Jk(m) (13)

= āG(m) + b̄ (14)

where k ∈ Ωm, ā and b̄ are the average of a(k) and b(k) over
N patch models.

There have been several recent attempts to improve the
performance of the original guided filter. The main idea be-
hind these attempts is to replace the simple average operation
by the weighted average in k ∈ Ωm [18]:

J(m) =
1∑N

k=1 w(k)

N∑
k=1

w(k)Jk(m) (15)

One proposal is to define the weight as a function of the patch
variance

w(k) = f(σG(k)/σr) (16)

where σr is a user defined scale parameter and f(x) is a
decreasing function of |x|.

III. THE PROPOSED FILTER
A. THE BASIC IDEA
We consider the case in which ε (in equation (8)) is set
to a huge number such that the patch parameter ak can be
considered as almost the same value for all patches. Let us
denote this value α. We can thus write the weighted guided
filter output as

J(m) =
1∑N

k=1 w(k)

N∑
k=1

w(k)Jk(m) (17)

= τI(m) + α(G(m)− τG(m)) (18)

where τI(m) and τG(m) are weighted average ofN pixels in
the patches centered at location of m for the mean images µI
and µG as follows:

τI(m) =

∑N
k=1 w(k)µI(k)∑N

k=1 w(k)
(19)

and

τG(m) =

∑N
k=1 w(k)µG(k)∑N

k=1 w(k)
(20)

B. A PATCH VARIANCE WEIGHTED AVERAGE (VWA)
FILTER AND EXTENSIONS
In this paper, we only focus on a special case where α = 0
(corresponding to ε → ∞). Let us first consider the simplest
case I = G. The filter will be called the patch variance
weighted average (VWA) filter which can be written as

J(m) = τI(m) (21)

1) The bilateral VWA filter
We can change the filter by replacing µI(k) in (19) with the
original image I(k) such that the new filter is in the form of
local average:

J(m) =

∑N
k=1 w(k)I(k)∑N
k=1 w(k)

(22)

where k ∈ Ωm is the location index of a pixel in the patch
center at location m. We should point out that the index k is
now used to represent the pixel location rather than the patch
index. The weight is calculated as

w(k) =
1

1 + (σ2
I (k)/σ2

r)2
(23)

where σ2
I (k) is the variance of the patch centered at location

k and σr is a user defined scale parameter. We further define
this scale parameter as the following

σ2
r = s× σ̄2

I (k) (24)

where

σ̄2
I (k) =

1

N

N∑
k=1

σ2
I (k) (25)

and s is a user defined scale parameter which controls the
scale of smoothing.

Inspired by the bilateral filter, the VWA filter is further
extended to have the following form

J(m) =

∑N
k=1 w1(k)w2(k)I(k)∑N
k=1 w1(k)w2(k)

(26)

where
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FIGURE 1: Rolling GVWA comparison using self guidance with fixed σs = 1 and s = 0.75.

w1(k) = e−||m−k||
2
2/σ

2
s (27)

and σs is a user defined spatial scale parameter and ||m −
k||22 is the Euclidean distance between the two pixels. We set
w2(k) = w(k). While the filtering effect of the VWA filer is
completely controlled by the patch size, the smoothing effect
of the bilateral VWA filter is controlled by adjusting σs and
s.

2) Guided VWA (GVWA) filter and rolling guidance filter
We now consider the case I 6= G which leads to the use
of guidance image. There are two main ideas in using the
guidance image: (1) using the guidance image to calculate the
weights, e.g., in the joint-bilateral filter [1], and (2) iterative
guidance filtering which is called the rolling guidance filter
[10]. Following the first idea we can easily extend the VWA
filter by using the guidance image to calculate the weights,
i.e.,

w(k) =
1

1 + (σ2
G(k)/σ2

r)2
(28)

Where σ2
r is also calculated using the guidance image:

σ2
r = s× σ̄2

G(k) (29)

The resulting filter will be called guided VWA (GVWA)
filter which is mathematically represented as

J = GVWA(I,G; θ) (30)

where J, I, and G present the output, input and guidance
images, respectively. The symbol θ represents the collection
of all user defined parameters θ = {σs, s,Niter}, where
Niter is the number of iterations to be discussed next.

Following the second idea, the rolling guidance filter can
be defined as one of the following iteration methods which
stops when the maximum number of iteration is reached (n =
Niter).
• Type-I: Fixed input I , rolling guidance G, where
G(n) = J (n−1) and J (0) = G.

J (n) = GVWA(I,G(n); θ) (31)
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• Type-II: Fixed guidance G, rolling input I , where
I(n) = J (n−1) and J (0) = I .

J (n) = GVWA(I(n), G; θ) (32)

• Type-III: Rolling input I and guidance G, where I(n) =
G(n) = J (n−1), I(0) = I and G(0) = G.

J (n) = GVWA(I(n), G(n); θ) (33)

For all three types we can use the special self-guided case,
i.e., G = I . In Fig. 1 we show the smoothing effect of the 3
types of rolling filters using the original image as a guidance
and varying the number of iterations. We can see that Type-
I has the least smoothing power, while Type-II and Type-III
produce similar results which have stronger smoothing effect
than that of Type-I. The weights are calculated each time the
guidance image is updated, so Type I and Type III filters are
computationally more expensive than Type-II as it requires
the weights to be calculated only once. In the following we
will focus on using the Type-II iteration only.

C. DISCUSSIONS
1) Implementation and computational complexity
We can see from section III-B1 that the computational com-
plexity of the proposed filter is the same as that of the guided
filter which is O(Npix). This is verified by a brute-force
MATLAB implementation of the algorithm GVWA Type-II
and Type-III which are applied to images of different sizes.
Type-I was omitted because its running time is the same as
Type-III method.

Fig. 2 shows that the computational time is a linear func-
tion of the size of the image and that Type-II has a lower
running time than Type-III, this is because the number of
iterations used on this experiment is Niter = 10, so the
weights need to be calculated 10 times when using GVWA
Type-III and only once when using GVWA Type-II. Updat-
ing the weights requires the use of 3 linear filters (fmean)
and two element-wise multiplications and one element-wise
division which significantly increase the running time when
performed on each iteration. Such calculations require signif-
icantly more computation time when an application requires
a large number of iterations. Since GVWA Type-II is more
efficient, for the rest of the paper we only use this method for
applications.

Fig. 2 also shows the running time of the guided filter
(GIF1) [8] when applied for 10 iterations to the same image
sizes. We can see that our filter is faster than the GIF, this
is because our method does not need to compute the patch
covariance.

The steps of the implementation of the GVWA filter are
summarized in Algorithm 1, where ".∗" is the symbol for the
element-wise multiplication operation, "./" is the symbol for
the element-wise division operation, and fmean and fgauss
are a mean and a Gaussian filter respectively. The size of the

1http://kaiminghe.com/eccv10/
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FIGURE 2: Running time of the proposed filter implemented
in MATLAB. Npix is the number of pixels in an image. The
computer used to obtain these results is with an Intel Core i7
3930K processor and 32GB RAM. MATLAB is running in
Ubuntu 16.04 LTS.

filter kernel (patch size) is determined by the parameter σs. In
our implementation, the patch size is defined as: patchSize =
floor(4σs)+1. For a color image, the weight for the {R,G,B}
components is the same and is defined as:

w(k) =
1

1 + (σ2(k)/σ2
r)2

(34)

where the patch variance σ2
I (k) is replaced by the maximum

of the three component: σ2(k) = max{σ2
R(k), σ2

G(k), σ2
B(k)}.

A MATLAB implementation can be found in Appendix and
in the project’s GitHub repository2.

Algorithm 1: Pseudo code of the GVWA filter
Input: Filtering input image I , guidance image G,

spatial scale σs, scale of smoothing s
Output: Filtering output J
meanG = fmean(G)
corrG = fmean(G. ∗G)
varG = corrG −meanG. ∗meanG
varr = s. ∗ fmean(varG) // Eq.29
w = 1./(1 + (varG/varr)

2) // Eq.28
J = fgauss(w. ∗ I)
/* fmean and fgauss are a mean and a Gaussian filter

respectively. */

2) Relationship with the bilateral filter
The bilateral filter is defined as:

J(m) =

∑
k∈Ωm

ws(k)wr(k)I(k)∑
k∈Ωm

ws(k)wr(k)
(35)

2https://github.com/fergaletto/GVWA
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FIGURE 3: Approximation accuracy of the local absolute difference using the standard deviation. Each sub-figure is a
histogram of the absolute difference of (horizontal axis) all pairs of pixels within a patch conditioned on a standard deviation
value. The histograms are calculated from an image ("peppers.png"in MATLAB). σ and τ are the patch standard deviation and
histogram’s sample mean, respectively. There is a high probability that the absolute difference is less than κ× σ where κ ≤ 2

where Ωm is the set of pixel indices of a patch centered at
I(m). The spatial weight ws(k) and the range weight wr(k)
with user defined scale parameters σs and σr are defined as:

ws(k) = e−||m−k||
2
2/σ

2
s (36)

wr(k) = e−(G(m)−G(k))2/σ2
r (37)

The bilateral filter is computationally expensive because
the range weight involves the pixel to be processed. As a
result, a double for-loop is required for a brute-force imple-
mentation. The outer loop runs through all pixels of the input
image, while the inner loop runs through a patch of pixels
centered at pixel I(m). Let the number of pixels of the image
be Npix and the number of pixels in the patch be M , the
computational complexity is O(NpixM).

Comparing the proposed filter with the bilateral filter, we
can see that the spatial weight is the same: w1(k) = ws(k).
The difference is in the way the range weight is calculated.
In the following, we show that the proposed bilateral VWA
filter is related to the bilateral filter in the following sense

(G(m)−G(k))2 → σ2
G(k) (38)

where σ2
G(k) is the variance of a patch centered at G(k)

and k ∈ Ωm. We use the symbol "→" to indicate that the
left term can be approximated/replaced by the right term.
The proposed filter avoids the computationally expensive
calculation of (G(m)−G(k))2 by replacing it with σ2

G(k).
What is the justification for the relationship shown in

(38)? For simplicity, let us assume pixels in the patch follow
an independent and identical distribution with mean µG(k)
and variance σ2

G(k). The difference G(m) − G(k) is then
zero mean with standard deviation

√
2σG(k). For a normal

distribution, the probability of the difference lies within two
standard deviations, i.e., |G(m)−G(k)| < 2×

√
2σG(k) is

p(|G(m)−G(k)| < 2×
√

2σG(k)) = 0.95 (39)

As such, we can say that 2 ×
√

2σG(k) is the estimate of
the worst case of the absolute difference. In other words, such
estimate is an over estimate with probability 0.95 and is an
under estimate with probability 0.05. If we instead use one
standard deviation as the estimate, then
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FIGURE 4: Filtering a 1D signal using the proposed GVWA
filter with different parameter settings and no iteration.

p(|G(m)−G(k)| <
√

2σG(k)) = 0.65 (40)

In other words, the standard deviation is an over estimate of
the absolute difference with probability 0.65 and is an under
estimate with probability 0.35. Therefore, we can replace the
range weight by the approximation:

ŵr(k) = e−(κ×
√

2σG(k)/σr)2 = e−2κ2σ2
G(k)/σ2

r (41)

where κ is a scale parameter set by the user to control the
number of standard deviations used for the approximation.
In addition, the proposed filter replaces the exponential op-
eration with the division operation which achieves further
savings in computational time.

To empirically validate the estimation accuracy, we calcu-
lated the standard deviation for all the patches in an image
(the image in MATLAB "peppers.png’). We also calculate
the pixel absolute difference within all patches. We created a
2D histogram of the distribution of the patch standard devia-
tion versus the absolute difference. The standard deviation is
quantified into 9 bins, the absolute difference is quantified
into 20 bins. For each standard deviation, we can plot a
distribution of the absolute difference. The results are demon-
strated in Fig. 3 which are presented as 9 sub-figures rather
than a 2D histogram for easy visualization. Each sub-figure
represents the distribution of the absolute difference for a
given standard deviation indicated by σ in the figure. The
sub-figures are organized in the order of increasing standard
deviation. The mean of the absolute difference is indicated by
τ . We can clearly see that the mean of the absolute difference
roughly follows that of the standard deviation and for all

FIGURE 5: Image smoothing using the proposed filter
(Niter = 1) under different combinations of parameter
settings. Increasing σs leads to smoothing out small scale
details. Using a smaller s value results in sharper edges for
large scale objects.

cases there is a high probability that the absolute difference
is less than κ × σ where κ ≤ 2. These observations provide
concrete evidence for the above statistical analysis. Thus, the
proposed filter is justified from results of statistical analysis
and simulation using a real image.

IV. SIMULATION RESULTS AND COMPARISONS

A. PARAMETER SETTINGS

The proposed filter has three user defined parameters: (1) σs
defines the patch size which controls the smoothing effect,
(2) s controls the sharpness of the result, and (3) Niter is the
number of iterations when the filter is used in iterative mode.
In this section, we study the effects of these three parameters.

1) The two scale parameters

To demonstrate the edge-preservation ability of the proposed
filter in the non-iterative operation (Niter = 1), we start by
filtering a 1D signal which provides a demonstration of the
filter performance. In Fig. 4, we can see that the GVWA filter
reduces the effect of small-scale oscillations/edges while
keeping the large-scale edges. In Fig. 5, we observe that
increasing σs leads to an increased smoothing in the small
details of the image. In addition, setting s a small value has
two different consequences: increasing the smoothing effect
on small oscillations and producing sharper edges for large
scale objects.
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(a) Smoothing effects for fixed σs = 1 under different combinations of s (row-wise) and Niter (column-wise).

(b) Smoothing effects for fixed σs = 2 under different combinations of s (row-wise) and Niter (column-wise).

FIGURE 6: Smoothing effects for σs = 1 and σs = 2 under different combinations of s (row-wise) and Niter (column-wise).
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(a) Input image (b) DT [5] (c) L0 [6] (d) RGF [10]

(e) BTF [11] (f) WLS [4] (g) STF [9] (h) SDF [26]

(i) RTV [7] (j) WGF [18] (k) AnisGF [23] (l) Proposed filter

FIGURE 7: A comparison of edge-preserving image smoothing with a group of state-of-the-art algorithms. (a) Original image,
(b) DT (σs = 30, σr = 0.7, Niter = 5), (c) L0 (λ = 0.02, κ = 2, Niter = 1), (d) RGF (σs = 5, σr = 0.1, Niter = 20),
(e) BTF (k = 5, Niter = 5), (f) WLS, (λ = 1, α = 1.2), (g) STF ( σs = 3, σr = 0.08, σ = 0.01, Niter = 4), (h) SDF
(σg = 50, σu = 400, λ = 30, nei = 1), (i) RTV (σ = 3, λ = 0.015, ε = 0.02, Niter = 4) (j) WGF (σ = 1, ε = 0.01, Niter = 10)
(k) AnisGF (σ = 1.5, ε = 1) (l) Proposed rolling GVWA Type-II filter (σs = 1.5, s = 0.75, Niter = 20).

(a) Input image (b) LADR [38] (c) muGIF [39] (d) Ours

FIGURE 8: Visual comparison of scale-space representation, (a) Input image, (b) LADR filter, (c) muGIF, (d) Our method.

2) Iterative filtering

We study the Type-II iteration algorithm and the effects of
different settings of σs and s under different number of
iterations, we run simulations on the image "peppers.png" (an
image in the MATLAB Image Processing Toolbox). Results
are shown in Fig. 6. We make the following observations.
For a fixed σs and s, the smoothing effect increases with the
number of iterations. Indeed, when Niter = 100 or 1000,
the image is "flattened" in that almost all details have been
removed. For a fixed σs, increasing the scale parameter s
will lead to smoother results. This is more evident when the

number of iterations increases. Comparing the two figures,
we can see that for the same setting of s andNiter, the bigger
value of σs leads to a smoother result.

B. APPLICATIONS AND COMPARISONS

1) Edge-preserving image smoothing

We start by demonstrating the performance of the pro-
posed filter in edge-aware filtering. Fig. 7 shows the edge-
preserving properties of the filter compared with the do-
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(a) Original HQ (b) Compressed (c) L0 [6]

(d) AnisGF [23] (e) WGF [18] (f) Proposed method

FIGURE 9: JPEG compression artifact removal (a) Original image, (b) Compressed image (Quality = 10%), (c) L0 (λ =
0.02, κ = 1.5), (d) WGF (σ = 1.5, ε = 0.01, Niter = 3), (e) AnisGF (σ = 2.5, ε = 0.01), (f) Proposed filter (σs = 0.75, s =
0.5, Niter = 20). We can clearly see that the proposed filter outperforms L0, WGF and AnisGF filter in preserving features and
removing compression artifacts (marked by square boxes).

main transform filter (DT3) [5], L0 filter (L0
4) [6], rolling

guidance filter (RGF5) [10], bilateral texture filter (BTF6)
[11], weighted least-squares (WLS7) [4], tree filter (STF8)
[9], static-dynamic filter (SDF9) [26] and relative total vari-
ation (RTV10) [7]. To make comparison with other weighted
versions of the guided filter, we wrote our own code for
Weighted guided image filtering (WGF) and Anisotropic
guided filtering (AnisGF). Parameter settings for all methods
are provided in the figure caption. We can see that results
produced by the proposed filter are similar to those produced
by other methods.

The proposed filter can also be used to selectively remove
objects of different scales from an image. Fig. 8 (d) shows
the result of applying the proposed filter to smooth objects of
different sizes by preserving the structural information of the
image. In this experiment we compared with two state of the
art methods for scale-ware smoothing: Local activity-driven
structural-preserving filtering (LADR) [38] and Mutually
guided image filtering (muGIF) [39]. To selectively smooth
objects from 3 different scales we use three different set of
parameter. When applying LADR we set the λ parameter to
0.03, 0.08 and 0.3. On the other hand, when muGIF is used
we vary the regularization parameter αt to 0.001, 0.1 and 1
while keeping a fixed αr, Niter and mode equal to 1, 10 and
0 respectively.

As can be seen in Fig. 8 our method can successfully re-

3DT: https://www.inf.ufrgs.br/ eslgastal/DomainTransform/
4L0 http://www.cse.cuhk.edu.hk/ leojia/projects/L0smoothing/
5RGF http://www.cse.cuhk.edu.hk/ leojia/projects/rollguidance/
6BTF https://github.com/JiaXianYao/Bilateral-Texture-Filtering
7WLS https://www.cs.huji.ac.il/ danix/epd/
8STF http://linchaobao.github.io/
9SDF https://github.com/bsham/SDFilter
10RTV https://github.com/yearway/RTV_Smooth

move small, medium and large scale details depending on the
settings, but it does not overpass the outstanding performance
of LARD and muGIF at edge preservation when filtering
large scale objects. Boundaries of meaningful objects at each
scale are better preserved with LARD and muGIF.

TABLE 1: MSE and PSNR for images in Fig. 9.

Image MSE PSNR

Compressed 0.0032 24.9877
L0 0.0023 26.2988
AnisGF 0.0035 24.5728
WGIF 0.0032 24.9758
Proposed filter 0.0020 26.9503

2) Clip-art and JPEG compression artifact removal
To demonstrate the performance of the proposed filter on the
task of removing JPEG compression artifacts, we first use a
high quality image and compress it using the JPEG format
with a compression quality factor of 10%. Then we filter the
low quality image with compression artifacts using our filter
rolling GVWA Type-II with σs = 0.75, s = 0.5, Niter = 20.
We compare the result using the L0 smoothing filter [6] with
λ = 0.02, κ = 1.5 and two weighted versions of the guided
filter WGF [18] and AnisGF [23] with settings σs = 1.5, ε =
0.01, Niter = 3 and σs = 2.5, ε = 0.01, respectively. Fig. 9
shows that our filter is able to remove all the color artifacts
due to the low quality compression while keeping the edges
and preserving the colors of the image. The proposed filter
performs better than the L0 smoothing in preserving some
features of the image, e.g., the shade on the ear (marked by a
red square in the figure). Also, the proposed filter removes all
the artifacts due to the compression while WGF and AnisGF
struggle to remove artifacts near high contrast edges.

10 VOLUME 4, 2016

https://www.inf.ufrgs.br/~eslgastal/DomainTransform/
http://www.cse.cuhk.edu.hk/~leojia/projects/L0smoothing/
http://www.cse.cuhk.edu.hk/~leojia/projects/rollguidance/
https://github.com/JiaXianYao/Bilateral-Texture-Filtering
https://www.cs.huji.ac.il/~danix/epd/
http://linchaobao.github.io/
https://github.com/bsham/SDFilter
https://github.com/yearway/RTV_Smooth


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3106907, IEEE Access

Galetto et al.: Edge-aware filters based on adaptive patch variance weighted average

(a) Original (b) L0 [6]

(c) IRWF [40] (d) Proposed method

FIGURE 10: Clip-Art compression artifact removal (a) Original image, (b) L0 (λ = 0.05, κ = 2), (c) IRWF (r = 8), (d)
Proposed filter (σs = 0.5, s = 0.75, Niter = 30). We can clearly see that the proposed filter outperforms the L0 filter in
preserving features (marked by square boxes) of the original image.

Using the original high quality image as a reference, we
calculated the mean squared error (MSE) and peak signal-
to-noise ratio (PSNR) to perform a quantitative comparison.
It can be seen in Table 1 that the MSE is improved from
3.2 × 10−3 to 2.0 × 10−3 using the proposed filter while
with L0 smoothing only improved to 2.3 × 10−3. Similar
results can be seen in the PSNR. On the other hand, AnisGF
and WGF do not improve the MSE and PSNR with respect to
the compressed image even though there is a notorious visual
improvement.

To demonstrate the removal of compression artifact from
clip-art images, a low quality clip-art image is processed by
the proposed rolling GVWA Type-II filter with σs = 0.5, s =
0.75, Niter = 30, L0 smoothing [6] with λ = 0.05, κ = 2 and
IRWF [40] with r = 8. We can see in Fig. 10 that the three
methods successfully remove the artifacts, the proposed filter
performs better in preserving the low contrast edges than
L0 and produce more natural looking edges than IRFW (see
areas marked by squares).

3) Structure separation
Structure separation is a process of decomposing the over-
all image structures (meaningful information) from highly
correlated background (texture/noise). In this application,
we demonstrate the performance of the proposed filter in
smoothing out small scale textures while maintaining the
prominent structures. The proposed filter is able to extract the
main structure from irregular textures because the small scale
details will progressively vanish as the number of iterations
increases. Results are shown in Fig. 11 which provides a
comparison of the performance of the proposed filter with a
group of state-of-the-art structure separation algorithms. We
can clearly see that our filter can produce comparable results
in terms of structure extraction. In fact, the proposed filter
produces sharper edge boundaries, less blocking artifacts in

texture areas, and better contrast in comparison with the other
filters. In particular, as shown in Fig. 11 (a) and (b), we use
a magnified box to highlight the performance of the filters
on the fish eye where the main improvement of performance
can be observed. When comparing Fig. 11 (b) with (c) we
can see that our method under-performed RTV since it did
not remove some pixels with high gradients from the back-
ground, although changing the filter parameters can smooth
the background as RTV (σs = 1, scale = 0.5, Niter = 100)
we opted to prioritize sharpness and contrast at the cost of
leaving those few pixels.

Table 2 presents a quantitative assessment using the en-
tropy metric (T3SI11) [41]. This metric aims to measure
the similarity between the original image and the processed
image. A bigger value indicates higher similarity. We can see
from Table 2 that the performance of the proposed algorithm
produces comparable results and is closer to the average of
the other filters (the average is 2.0851).

4) Edge extraction/enhancement example
Edge detection aims at finding the boundaries of the objects
in the scene. The gradient is commonly used to extract the
edges of an image I . For example, the magnitude of the gra-
dients defined in (42) is used for edge extraction. However,
gradient-based methods are greatly affected by noise or small
details.

E = |∇I| =
√
∇xI2 +∇yI2 (42)

In Fig 12, we demonstrate the benefits of applying the
proposed filter to smooth the image before calculating the
edge gradient magnitude. We can see that pre-processing the

11T3SI: https://github.com/liuchong777/T3SI
13IGF: https://github.com/JunhoJeon/interval_gradient
13SAF: https://github.com/JunhoJeon/safiltering
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TABLE 2: Texture smoothing quality assessment for results in Fig. 11.

Algorithm RTV RGF STF BTF SDF IGF SAF SND Proposed

T3SI [41] 2.2080 1.9820 2.1787 2.0101 2.1483 2.1160 2.0753 1.9626 2.0334

(a) Original image (b) Proposed (c) RTV [7] (d) RGF [10] (e) BTF [11]

(f) STF [9] (g) SDF [26] (h) IGF [42] (i) SAF [43] (j) SND [44]

FIGURE 11: A comparison of structure separation results for the "Fish" image with a group of state-of-the-art algorithms.
The proposed method produces an image of highest contrast compared with results from other methods. (a) Original image,
(b) Proposed (σs = 0.5, s = 0.5, Niter = 500), (c) RTV (σ = 6, λ = 0.02, ε = 0.02, Niter = 4), (d) RGF (σs = 5, σr =
0.08, Niter = 5), (e) BTF (σ = 5, Niter = 5), (f) STF (σs = 5, σr = 0.05, σ = 0.02, Niter = 5), (g) SDF (σg = 50, σu =
400, λ = 200, nei = 2), (h) IGF12(σ = 4.3, ε = 0.032), (i) SAF13(σ = 4, σr = 0.1, Niter = 5), (j) SND (σ = 0.04, λ =
0.25, Niter = 19).

image using the proposed filter leads to a cleaner and sharper
edge map which not only preserves the main structure of the
scene but also reduces the effect of the noise and textures.

(a) Input (b) Gradient map (c) Proposed

FIGURE 12: Edge extraction example. (a) Original image.
(b) Gradient map of original image. (c) Gradient map of
smooth image (σs = 1, s = 0.5, Niter = 15).

5) Non-photo realistic rendering
In this application, we demonstrate the use of the proposed
filter to produce non realistic versions of the image using the
framework proposed in [14]. This method stylizes the image
by first simplifying its content using a filter to blur small

details and sharp edges. The high contrast details or edges
are then magnified to further increase the visual abstraction.
The luminance is quantized to add the cartoon appearance to
the image. In this paper, we take a slightly different approach
since we do not employ the luminance quantization.

(a) Original (b) Abstraction (c) Sketch

FIGURE 13: Non-photo realistic rendering, the proposed
filter is used to produce two different artistic effects: (a) Orig-
inal image, (b) Abstraction, (c) Sketch (κ = 0.1, ζ = 0.1).

We use the proposed filter to blur the low contrast details
while keeping the edges of the image. We then calculate
the gradient map denoted E = |∇B| for the filtered image
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denoted B to detect the edges. We further process the value
E using the following method:

D(x, y) =

{
1, E(x, y) ≥ κ
E(x,y)
κ , E(x, y) < κ

(43)

where κ is a user defined parameter. We define ζ ∈ [0, 1] as
another user defined parameter to set to zero all the pixels that
comply with D(x, y) < ζ. The purpose is to remove all the
small edges that weren’t removed by smoothing the image
and were amplified in the previous step. As a by-product
of our approach, the gradient magnitude map of the filtered
image represent only large and high contrast edges in the
original image. As such, the processed edge map produces
a sketch effect S(x, y) = 1−D(x, y). We then use the edge
map D(x, y) and the smooth image to produce the abstract
image:

A(x, y) = (1−D(x, y))×B(x, y) (44)

Results in Fig. 13 show that our approach successfully
produces an artistic abstraction and a sketch effect from
the input images. Column (b) shows that the proposed filter
preserves only strong edges and structure. Abstraction results
are shown in column (c), as described in [14], these images
look stylized since all low contrast details were blurred while
strong edges were visually increased. The sketch images are
shown in column (d) which show only large and high contrast
edges of the original images.

6) Saliency object detection
Saliency detection aims at locating the structural information
(objects/regions) in a natural scene without emphasizing
unimportant details. This process is similar to human per-
ception. In some images, the foreground and background are
correlated which makes saliency detection a challenging task.
To address this problem, edge-aware filters can be used as a
pre-processing step to aid saliency detection. We employ our
filter to abstract the object of interest by getting rid of the
unwanted details while preserving meaningful structures. In
[45], the authors smoothed out the input image prior to the
application of the saliency map generation algorithm in [46].
We follow the same approach to generate the map. Results
are shown in Fig. 14 in which it is clearly noticeable that
our saliency map is more consistent and uniform than the
algorithms in [45] and [46].

7) Detail magnification
Unsharp masking is an effective algorithm to enhance the
details of an image. The algorithm is defined as:

U = J + γ(I − J) (45)

where I is the input image, J , called base layer, is the result
of a low-pass filter, and γ is the gain used to amplify the high
frequency components (I − J) called detail layer.

(a) Input image (b) Saliency map of (a)

(c) Smoothed by [45] (d) Saliency map of (c)

(e) Smoothed by our filter (f) Saliency map of our filter

FIGURE 14: A comparison of salient object detection. Top
line: (a) Original image, (b) Saliency map of (a) using [46].
Middle line: (c) is smoothed by [45], (d) Saliency map of
(b) using [46]. Bottom line: (e) Smoothed by proposed filter
(Rolling GVMA Type-III with σs = 0.5, s = 2.5, Niter =
3), (f) Saliency map of (c) using [46].

In Fig. 15, we demonstrate that the proposed filter can
be used to produce J in the unsharp masking algorithm, we
also compare the result with other 3 well-known methods for
image sharpening and detail enhancement such as contrast
adaptive sharpening (CAS)14, generalized unsharp masking
(GUM) [47] and a guided edge-aware smoothing-sharpening
filter (SSIF15) [48]. The settings for each algorithm were
selected to avoid over-sharpening so the resulting image has
a natural appearance. We can see that our method is able
to amplify the details of the scene without producing halo
artifacts and its result is comparable to all 3 other algorithms.

8) Multi-focus image fusion
Multi-focus image fusion is a technique that blends two or
more images which are only focused on certain objects of the
same image. The fusion algorithm produces a new image in
which all objects are in focus. The methods to perform multi-
focus image fusion can be categorized into four categories:
transform domain, spatial domain, combined transform, and
deep learning methods [54], [55]. In this paper we modify
two popular fusion methods by replacing the guided filter [8]
by the proposed filter to investigate its performance in this

14https://www.amd.com/en/technologies/radeon-software-fidelityfx
15https://github.com/fergaletto/SSIF
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(a) Original (b) CAS (c) GUM (d) SSIF (e) Proposed

FIGURE 15: Detail enhancement. (a) Original image. (b) CAS results. (c) GUM results. (d) SSIF results. (e) Proposed filter
results (σs = 0.5, s = 0.01, Niter = 10, γ = 2).

application. Both qualitative and quantitative comparison are
performed to validate the proposed filter.

The first method called GFF [30] decomposes each source
image into a base layer and a detail layer. Base layers and
detail layers of source images are then fused individually
using a weighted average technique. The weight map is
calculated based on the salience map which is refined by
using the guided filter. The resulting base and detail layers
are used to finally reconstruct the fused image.

The second method called GFDF [15] performs a pixel-
based weighted linear combination of the source images.
First, a rough focus map for each source image is estimated
by subtracting the image from a filtering result. The rough
map is then refined using the guided filter. A decision map
is generated by applying a pixel-based maximum rule. It is
also refined by using another instance of the guided filter.
The refined decision map is used as the weight map for the
linear combination that fuses the input images.

To demonstrate the performance of the proposed filter in
this application, we implemented the GFF16 and GFDF17

16https://github.com/funboarder13920/image-fusion-guided-filtering
17https://github.com/bitname/Multi-focus-image-fusion-GFDF

filters in MATLAB. In our implementation, we replace the
guided filter with the proposed filter. We use the terms
Proposed filter (1) and Proposed filter (2) to represent the
algorithms of GFF and GFDF which use the proposed filter,
respectively. Figures 16 and 17 show the fusion results for
the two pairs of images from the Lytro dataset [56]. Input
A and Input B focus on the foreground and background,
respectively. The fusion result applying the original GFF [16]
and GFDF [15] are shown in columns (c) and (d) respectively.
The result of using the proposed filter in the GFF and GFDF
algorithms are displayed in columns (e) and (f). We can see
that the proposed filter produces similar results to those of the
guided filter.

We perform an objective comparison using five metrics to
evaluate the quality of the fusion result without a reference
as suggested in [15]. These metrics are:

• QG [49] evaluates the amount of edge information
transferred from the source images to the fusion result.

• QP [50] measures the edge information transferred
from the source to the fusion result by using phase
congruence.

• QY [51] measures the degradation of structural informa-

TABLE 3: Multi-focus image fusion quality measurement for Fig. 16 and Fig. 17.

Image Fusion Method QG [49] QP [50] QY [51] QCB [52] QFMI [53]

Cookie GFF 0.6886 0.8520 0.9630 0.7328 0.5035
Proposed filter (1) 0.6905 0.8555 0.9643 0.7330 0.5073
GFDF 0.7117 0.8635 0.9884 0.7944 0.5963
Proposed filter (2) 0.7128 0.8631 0.9887 0.7939 0.5962

Book GFF 0.6133 0.8764 0.9078 0.7418 0.5118
Proposed filter (1) 0.6341 0.8829 0.9207 0.7429 0.5229
GFDF 0.6799 0.8935 0.9855 0.8057 0.6309
Proposed filter (2) 0.6827 0.8950 0.9855 0.8040 0.6296
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(a) Input A (b) Input B (c) GFF [16]

(d) GFDF [15] (e) Proposed filter (1) (f) Proposed filter (2)

FIGURE 16: A comparison of multi focus image fusion with
a group of state-of-the-art algorithms. (a) Input image A,
(b) Input image B, (c) GFF (r1 = 45, ε1 = 0.3, r2 =
7, ε2 = 10−6), (d) GFDF (r = 5, ε = 0.3, w = 7),
(e) Proposed filter (1) (σs1 = 3.5, s1 = 10, Niter1 =
2, σs2 = 3.5, s2 = 10, Niter2 = 2), (f) Proposed filter (2)
(σs = 5, s = 1, Niter = 1).

tion of an image with respect to another image by using
the structural similarity [57] between the source images
and the fusion result.

• QCB [52] performs a perceptual quality evaluation of
the fusion result by using a local contrast and saliency
map.

• QFMI [53] measures the mutual information between
the feature map of the fusion image and the feature map
of the source images with small windows and average
all the results to get a single value.

Table 3 shows the results of the quantitative assessments
of images shown in Fig. 16 and Fig. 17. For all five metrics
higher values indicate higher fusion quality. We can see that,
in general, using our filter produces similar values as those
using the guided filter.

(a) Input A (b) Input B (c) GFF [16]

(d) GFDF [15] (e) Proposed filter (1) (f) Proposed filter (2)

FIGURE 17: A comparison of multi-focus image fusion with
a group of state-of-the-art algorithms. (a) Input image A,
(b) Input image B, (c) GFF (r1 = 45, ε1 = 0.3, r2 =
7, ε2 = 10−6), (d) GFDF (r = 5, ε = 0.3, w = 7),
(e) Proposed filter (1) (σs1 = 3.5, s1 = 10, Niter1 =
1, σs2 = 3.5, s2 = 10, Niter2 = 1), (f) Proposed filter (2)
(σs = 3.5, s = 1, Niter = 1).

V. CONCLUSION
In this paper, we have presented a new edge-preserving filter
which is based on the local weighted averaging structure and
statistics of the image. The new feature of this filter is the use
of a decreasing function of the local variance as the weight.
As a result, the filter has a computational complexity of
O(Npix). We have motivated the development of this filter by
taking an extreme parameter setting of the guided filter and
have performed statistical analysis and simulations. Results
not only show the connections between the proposed filter,
the bilateral filter and the guided filter, but also provides new
insights into the edge-preserving ability and the computa-
tional complexity of the proposed filter. In addition, we have
presented extensions to the proposed filter using the ideas of
bilateral weight, guidance information and iteration.

The edge-preservation performance of the proposed filter
has been demonstrated in many applications including: edge-
preserving smoothing, non-photo realistic image rendering,
compression artifact removal, detail magnification, edge ex-
traction, multi-focus image fusion, structure separation, and
salience detection. We have shown by using many images
and objective evaluation metrics (where they are available)
that the performance of the proposed filter is comparable or
superior to state-of-the-art filters. Therefore, the proposed
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filter is a new tool for tackling a wide range of image
processing problems.

APPENDIX. IMPLEMENTATION
MATLAB implementation of the proposed filter. We have
also released the code and applications on Github18.

function [J,w] = GAVWA(I,G,SigmaS,scale)

%input: I -- image to be processing I \in [0,1]
% G -- guidance image G \in [0,1]
% SigmaS -- bilateral spacial parameter,
% scale -- bilateral range parameter,

% patch size
patchSize = floor(4*SigmaS) + 1;
if mod(patchSize,2) == 0

patchSize = patchSize + 1;
end
N = patchSize*patchSize;

% normalized average kernel
h = ones(patchSize)/N;
% Gaussian Kernel
g = fspecial('gaussian',patchSize,SigmaS);

% patch mean of G
muG = imfilter(G, h,'symmetric');
% patch mean of G.*G
muGG = imfilter(G.*G, h,'symmetric');

% patch var of G
SigmaG= max(max(0,muGG - muG.*muG),[],3);

% weight calculation
SigmaR = scale*mean(SigmaG(:)); %eq. (24-25)
w = 1./(1+(SigmaG./SigmaR).^2); %eq. (28)

% normalization factor
nF = imfilter(w,g,'symmetric');

% for color images
if size(I, 3) == 3 % For color images.

w = cat(3,w,w,w); %make it 3d
nF = cat(3,nF,nF,nF);

end

% final output
J = imfilter(w.*I,g,'symmetric')./(eps+nF);%eq. 26
end
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