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Abstract 

It is important for integrating Photovoltaic (PV) systems with battery energy storage in the distribution 

network for the enablement of continued uptake of PV system installations. The escalating interest 

pertaining the environmental and climatic change concerns has encouraged the integration of renewable 

resources such as PV system into power distribution networks worldwide, which will be essential towards 

the achievement of a sustainable future. The PV systems development has resulted in a number of 

concerns which include intermittency of supply, reverse power flow, and voltage rises. Hence, this paper 

compares the various techniques for solar power smoothing. Moreover, two kinds of BESS models were 

used in charging the distributed storage units during midday, of which the power from the solar PV 

would be higher than the load level. The energy that is stored is next utilized for the reduction of the peak 

load in the evening and early morning. Urban and Rural Malaysian medium voltage Reference Networks 

(RNs) have been considered, the effect of various configurations of PV systems have been offset with 

Battery Energy Storage Systems (BESS). From this, combinations of PV and storage that are most 

effective at mitigating the issues were explored. 

Keywords: Photovoltaic (PV), Battery Energy Storage System (BESS), PV power smoothing, energy time 

shift, Reference Network (RN). 

 

I. Introduction 

The linking of electrical grids to the energy storage systems has shown increased quantitative as well as 

qualitative advantages for maintaining an economic and reliable system. As mentioned in [1-3], the 

energy storage systems can serve in bulk energy supply through the utilization of energy time shift 

(arbitrage) application. Additionally, the energy storage system is able to support several ancillary 

services like the output power smoothing for renewable energy (RE) resources (PV/wind), regulation, 

load following, and voltage support.  

The PV generation follows the day-to-day patterns and seasonal patterns that are in proportion to the local 

irradiance. There might arise discrepancy between the PV generation and the local demand for the built 

environment, for example, the yearly discrepancy for a 4.5 kWp PV installation and the electrical load of 

an individual residence was discovered to be eighty-one percent [4]. Widén et al. [5] conducted a 

comparison on the ability of varying PV array orientations, demand-side management tools, and Battery 

Energy Storage (BESS) for the enhancement of the matching capability of distributed PV positioned at 

high-latitude regions. Based on outcomes, it is found that BESS is the optimum efficient technology for 

the shifting of the PV generation in addressing the demand load at high PV penetration levels. The 

majority of Renewable Energy (RE) technologies are often incorporated at the distribution stage due to 

the small generator sizes, in addition to the voltage they produce [6,7]. 

Through the integration of PV generation, it was observed that the voltage profile is enhanced as voltage 

drop across feeder segments decreases, as the result from the decreased power flow via the feeder. 

Moreover, in instances when the generation from PV is bigger than the local demand at the Point of 

Common Coupling (PCC) of the PV inverter, the excess power surges revert to the grid. The PV inverters 

surplus power might generate reverse power surges in the feeder, which in turn might develop an increase 

in voltage at the feeder. A conventional solar PV resources peak time is noon time, when the degree of the 
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sun irradiance level is the most intense. However, the demand from customers is ordinarily lower at this 

hour of the day. At the Medium Voltage (MV) distribution feeder, there might be the occurrence of an 

increase in voltage due to the light load and peak PV generation during that period. There is the pertinent 

necessity for resolutions to be recommended in order to decrease in excess in voltage resulted by the PV, 

in order for the aimed penetration level be attained, and at the same time, adherence to the the system 

operation parameters is equally maintained. In the work by [8], it was suggested that the implementation 

of storage devices be integrated with PV systems, to keep the excess power from the PV array in the 

afternoon period. The fundamental objective of the work by [8] was to decrease the power loss as a 

resultant from the incapability of utilizing the generated power from PV. The unutilized energy can be 

kept in the battery storage locally, to be utilized during the peak load period. 

The PV power smoothing is a significant implementation for energy storage. In documented works, 

different techniques were recommended for the smoothing of the power production by solar [9-14]. A 

moving average (MA) technique was recommended in [15,16]. They utilized the MA technique for 

mitigation purposes for the short-term fluctuation of photovoltaic (PV) power by employing BESS. 

Additionally, from work by [17], the MA technique utilized to manage the battery energy in decreasing 

the PV power changes. In [18] an Exponential Moving Average (EMA) technique using hydrogen storage 

system was employed. It provides greater weights on the latest values. In the duo MA and EMA, the 

distance of how long the averaging window decides the way the storage systems charge or discharge. In 

instances when the length of the window is great, it necessitates the storage systems to encompass the 

difference between the actual and smoothed powers, even though the changes is not obvious [19] [29]. 

According to [20], a fuzzy wavelet transform technique was utilized to smoothen the generations of wind 

and solar power by utilizing batteries. Based on work by [19], it suggested a technique for ramp-rate 

control of PV power fluctuations. 

The current research will emphasize the introduction of Battery Energy Storage Systems (BESS) for the 

enhancement of fundamental concerns regarding of intermittency, voltage rise, heightening difference 

between midday and peak loads, in addition to reverse power flow. By employing DIgSILENT power 

factory to model Urban and Rural medium voltage (MV) RNs, integrations of BESS and PV systems were 

modelled for the provision of the optimum mitigation efficiency in addressing the restricting concerns. In 

this paper, two smoothing techniques were considered: simple moving average technique and polynomial 

curve fitting technique. Furthermore, the energy time shift application supervisors the BESS energy in 

order for the battery to be discharged at the time of the peak-load situations and charged during surplus of 

PV power generation. 

II. Solar Variability Profiles 

The simulation is carried out using five different PV variability profiles comprising overcast day, 

moderate variability day, clear sky day, high variability day, and mild variability day generation profiles 

[21]. The irradiance of solar is categorized into a few different categories employing the clearness index 

(KT) and variability index (VI). The equations to calculate the KT and VI are by using the Equation (1) 

and Equation (2), respectively. The changes in VI and KT will significantly affect the PV power output 

because the PV generation solely depends on the solar insolation. For this research, Figure 1 shows five 

different types of normalized solar variability PV data which were collected from the UTeM’s weather 

station. All the collected data is in the 1-minute resolution which is considered as a high-resolution 

interval. The lowest VI is representing the clear sky day, which in a generation profile has the least 

fluctuation. The clear sky day delivers a very constant irradiance profiles and very little step fluctuations 

to irradiance through the daytime cycle. Conversely, the overcast day possesses a very low solar 

irradiance caused by the crossing clouds and broken clouds that minimize the PV generation. 

𝐾𝑇 =
𝐼𝑡

𝐼𝑡
𝐸𝑋 

(1

) 

Where, 𝐼𝑡 = Ground level irradiance, 𝐼𝑡
𝐸𝑋 = The irradiance extraterrestrial. 
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𝑉𝐼 =
∑ √(𝐺𝐻𝐼𝑘 − 𝐺𝐻𝐼𝑘−1)2 +  ∆𝑡2𝑛

𝑘=2

∑ √(𝐶𝑆𝐼𝑘 − 𝐶𝑆𝐼𝑘−1)2 +  ∆𝑡2𝑛
𝑘=2

 
(2

) 

Where, 𝐺𝐻𝐼𝑘 = Vector of length n of global horizontal irradiance, 𝐶𝑆𝐼𝑘 = Vector calculated of clear sky 

irradiance, ∆𝑡 = Time interval in minutes. 

 
(a) Clear sky day (VI = 1.88) (KT = 0.7) 

 
(b) Overcast day (VI = 1.33) (KT = 0.2) 

 
(c) Mild variability day (VI = 3.64) 
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(d) Moderate variability day (VI = 7.72) 

 
(e) High variability day (VI = 15.18) 

 

Figure 1: Five different types of normalized solar variability PV data 

III. System Topology 

(a) Modeling of Reference Networks (RNs) 

Two reference networks were modeled, representing the real systems in the Malaysian networks. The 

reference networks were modeled by employing the generic characterization and parameters of RN in 

Malaysia that were attained from published works [22]. The software that was utilized to produce the 

models was the DIgSILENT power factory. One-minute time interval load flow simulations were 

performed on both RNs models. 

 

1) Urban RN with 33 and 11 kV feeders 

The DIgSILENT model in Figure 2 illustrates the reference network for 132/33/11kV voltage 

transformation. There are two-voltage transformation stages in the model, which are from 132/33kV and 

33/11kV primary substations. Table 1 depicts the development of the urban network parameters. Five 

11kV feeders were linked to each of the 33/11kV transformer as indicated in Figure 2. Every 11kV feeder 

was individually linked to five 11/0.4kV transformers. Furthermore, 33/11kV and 11/0.4kV transformer 

capacities were calibrated to 30MVA and 1MVA, accordingly. In totality, the load for the low voltage 

transformer individually was 390kW with an assumed power factor of 0.90 lagging. The average distance 

was 600m, between the 11/0.4kV distribution transformers, where the average total length of individual 

11kV feeder was 3km. 
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Table 1: Parameters for urban RN with 33 and 11 kV feeders 

Parameter 
Valu

e 

132/33kV transformer capacity, MVA 45 

No. of 11kV feeders per 33/11kV 

transformer 
5 

No. of 11kV transformer per 11kV feeder 5 

Length 33kV line, km/each 5 

33/11kV transformer capacity, MVA 30 

11kV feeder length per feeder, km/each 3 

11/0.4kV transformer capacity, MVA 1 

Distance between TX 11/0.4kV, km/each 0.6 

11/0.4kV transformer maximum demand, 

kW 
390 

 

Figure 2: DIgSILENT model for urban RN with 33 and 11 kV feeders 

2) Rural RN with 33 and 11 kV feeders 

For rural network with 33kV and 11kV feeders, the model used was the DIgSILENT model as shown in 

Figure 3. Whereas, Table 2 indicates the rural network parameters. The maximum demand is 190kW for 

every individual 11/0.4kV transformer. The distance of the 33kV line from 30MVA rated 33/11kV 

transformer is extensively of greater length in comparison to urban RN, which is 18km. A single 11kV 

feeder that is 31.5km long is supplying 15 units of 11/0.4kV transformers. The length between each 

0.5MVA rated 11/0.4kV transformer is 2.1 km. 

 



International Journal of Advanced Science and Technology 

Vol. 29, No. 9s, (2020), pp. 1383-1402 

 

1388 

ISSN: 2005-4238 IJAST  

Copyright ⓒ 2020 SERSC 

Table 2: Parameters for rural RN with 33 and 11 kV feeders 

Parameter 
Valu

e 

132/33kV transformer capacity, MVA 45 

No. of 11kV feeders per 33/11kV 

transformer 
3 

No. of 11kV transformer per 11kV feeder 15 

Length 33kV line, km/each 18 

33/11kV transformer capacity, MVA 30 

11kV feeder length per feeder, km/each 31.5 

11/0.4kV transformer capacity, MVA 0.5 

Distance between TX 11/0.4kV, km/each 2.1 

11/0.4kV transformer maximum demand, 

kW 
190 

 

Figure 3: DIgSILENT model for rural RN with 33 and 11 kV feeders 

(b) Modeling of PV System 

Model PV system is designed by using ‘ElmPVsys’ function in DIgSILENT simulation software. In this 

research, PV system with unity power factor is categorised as a grid-tied inverter type. The generation 

profile of PV datasets was collected from the PV system installed at Photovoltaic and Smart Grid (PVSG) 

research laboratory at UTeM. The PV system is connected on the same node as that of the BESS as 

shown in Figure 2 and Figure 3. 
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(c) Modeling of Battery Energy Storage System (BESS) 

Battery energy storage enables the integration of greater amounts of PV system generation through the 

smoothening power output, time shifting generated energy to follow demand, and reducing the voltage 

rise. BESS is also modeled through the utilization of ‘ElmGenstat’ and ‘ElmQdsl’ functions in 

DIgSILENT power factory software. The battery minimum, maximum, and initial SOC is typically set to 

10%, 90%, and 20%, respectively, in order to avoid damaging the storage bank. Moreover, the battery 

SOC is calculated through Equation (3). The charging power of BESS is shown by the (-) symbol and the 

discharging power of BESS is shown by the (+) symbol, accordingly. For the current study, a lithium ion 

battery-based storage system was chosen. Both PV system and BESS was linked to the single point of 

common coupling (PCC) for the purpose of simulation. The parameters used in the BESS power and 

voltage models are shown in Tables 3 and 4, respectively. BESS power model is used to follow the load 

by charging during surplus of PV power generation and discharge when demand is higher than 

generation, while BESS voltage model is used to mitigate the voltage rise issue. 

SOC(t)  =  SOC(t − 1) + ∫
𝐼

𝐶𝑏𝑎𝑡
 𝑑𝑡 × 100%

𝑡

0

 (3) 

Where, SOC(t): Battery state of charge at time t (%), SOC(t-1): Battery initial state of charge (%), I: 

Charge/discharge current (A), t: Time (h), 𝐶𝑏𝑎𝑡: Battery capacity. 

Table 3: Parameters used in the BESS power model 

Parameter 
Valu

e 

Eini Storage energy size [MWh] 
8.25

3 

SOCini Initial state of charge [%] 20 

SOCmin Minimal state of charge [%] 10 

SOCmax Maximal state of charge [%] 90 

Pstore Nominal storing active power [MW] 
1.25

8 

Qstore Nominal storing reactive power 

[Mvar] 
0 

PFullStore Power to store at full power 

[MW] 

1.25

8 

PStartStore Power to start storing [MW] 
0.00

1 

Pfeed Nominal feeding active power [MW] 
1.25

8 

Qfeed Nominal feeding reactive power 

[Mvar] 
0 

PStartFeed Power to start feeding [MW] 
0.93

4 

PFullFeed Power to feed at full power 

[MW] 

1.96

7 

Orientation 1=terminal j is closest, 

otherwise -1 
1 
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Table 4: Parameters used in the BESS voltage model 

Parameter 
Valu

e 

Eini Storage energy size [MWh] 
7.82

6 

SOCini Initial state of charge [%] 20 

SOCmin Minimal state of charge [%] 10 

SOCmax Maximal state of charge [%] 90 

Pstore Nominal storing active power [MW] 
1.23

5 

Qstore Nominal storing reactive power 

[Mvar] 
0 

uFullStore Voltage to store at full power 

[p.u.] 
1.06 

uStartStore Voltage to start storing [p.u.] 1.05 

Pfeed Nominal feeding active power [MW] 
1.23

5 

Qfeed Nominal feeding reactive power 

[Mvar] 
0 

uStartFeed Voltage to start feeding [p.u.] 
1.02

1 

uFullFeed Voltage to feed at full power 

[p.u.] 
0.94 

 

 (d) Modeling of Network Demand 

It extremely complex and problematic to identify all the types of customers served by each distribution 

transformer during the procedure of feeder analysis for a distribution system. To solve this problem, the 

solution is to develop a set of composite load profiles employing typical load data obtained from the 

power utility. Figure 4 indicates the typical load profiles of residential, commercial, and industrial 

customers [23]. In addition, all the loads modeled in DIgSILENT has power load with power factor equal 

to 0.90. The developments of the two reference networks are constructed according to residential, 

commercial, and industrial demand profiles. The minimum and maximum load change according to each 

reference network because of different user mix in the network. The load factors for the residential, 

commercial, and industrial networks were computed as 0.465, 0.598, and 0.755, respectively.  

 

Figure 4: Typical load profiles of residential, commercial, and industrial customers 
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IV. Methodology 

(a) PV Power Smoothing 

In this study, the adoption of simple moving average and polynomial curve fitting techniques are chosen 

to serve as the electric power smoothing techniques. The fundamental principle of these smoothing 

techniques is to smoothen the high fluctuations in the PV generated power, that is caused by partial 

shading of the PV arrays. The aforementioned smoothing techniques produce a battery power reference 

which mitigate the PV power variations at the point of common coupling (PCC). The total installed PV 

capacity on each of the MV lines for urban and rural networks is approximately 0.341 MW and 0.712 

MW, respectively.  

1) Simple Moving Average 

Simple moving average technique used in [24,15] takes the past values of the PV power for a selected 

period of time w, finding the average value for it as shown in Equation (4), where n represents the current 

sampling value. 

Pref−es
(n) =  

∑ Ppv(n − i)w−1
i=0

w
− Ppv(n) (4) 

Depending on whether the averaging period is large or small, the smoothing of the PV power will be 

more or less significant, respectively. This research proposes to use a 60-minute averaging interval to 

reduce power fluctuations. The more aggressive the smoothing, the more battery power will be needed, 

since they are between adjacent peaks has to filled by the energy from the storage. 

2) Polynomial Curve Fitting 

The curve fitting techniques are employed for the purpose of processing and extracting a mathematical 

relationship between the acquired data of PV output power [25]. The curve fitting defines an appropriate 

curve to fit the measured values and employs a curve function for the analysis of the relationship between 

the variables. The objective of curve fitting is to ascertain a function f(x) for the input measured data 

(xi,yi) where i = 1, 2,..,,n means the number of measurements. The general polynomial fits the data set to a 

polynomial function of the general form shown in Equation (5). In this study, six-order polynomial was 

used to provide a good fit to the data. 

F(x) = a0 + a1 x + a2 x2 + ……… (5) 

(b) Energy Time Shift 

Bulk energy storage is the repository of huge quantities of intermittent electricity when it is produced for 

the purpose of its utilization during low production periods, for example, storing solar energy during the 

midday for its utilization in the evening and early morning [26,27]. The stored energy can be discharged 

for varying applications. A probable application is to charge and discharge the storage unit to follow the 

system load, termed as load following. Another application of bulk energy storage is for the reduction of 

the voltage rise, where there is a necessity for the surplus quantity of power from the solar PV units to be 

lessened. The flowchart indicated in Figure 5 is utilized for the energy management of the simulated grid-

connected PV system. Initially, the BESS model compiles the generated solar power (Psolar), required load 

(Pload) and also the SOC of the battery (SOCbat). Following the serving of the required load, if there are 

excess of energy, it is then kept in the battery. However, for more quality in battery management, its SOC 

is restricted from exceeding 90%. In instances when the battery is completely charged, in the likelihood of 

the existence of extra energy, it is then sold to the grid. Conversely, in instances when the solar radiation 

is low, the generated power from PV is insufficient to supply the required load. Thus, alternative energy 

source is needed to address the load. In instances when the battery SOC is less than 10%, the required 

power (Prequired = Pload – Psolar) is purchased from the grid. In the case that the battery SOC is higher than 

10%, the required power may be discharge to the load from the storage battery. In order to properly 
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manage the battery, its operations must be carefully handled, in order for its SOC not to be lower than 

10%, as this is imperative. In instances that SOC goes lower than 10%, there arise an eventual risk on 

battery life. The total installed PV capacity on each of the MV lines for urban and rural networks will be 

approximately 1.755 MW and 2 MW, respectively. 

 

Figure 5: Flowchart of Battery Energy Storage System (BESS) model operation 

V. Simulation Results 

(a) PV Power Smoothing 

The illustrations of the simulation results of the two PV power smoothing techniques with four varying 

PV variability profiles are illustrated in this section, comprising overcast day, moderate variability day, 

high variability day, and mild variability day generation profiles. The simulation considers the integrated 

BESS and PV system. The PV system is controlled to operate at unity power factor i.e. the reactive power 

output (QPV) is zero. The PV system output power with the sixth order polynomial and 60 min moving 

average smoothed curves are indicated by Figures from 6 to 9 (a).  The BESS output power is indicated in 

Figures from 6 to 9 (b) & (c). The difference between the smoothed curve and actual power output curve 

is the battery power. Negative power signifies battery charge, meanwhile positive signifies discharge. The 

State of Charge (SoC) of the battery is configured to 20% at the start of the day to enable adequate energy 
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charge and discharge ability for power smoothing. Table 5 shows maximum capacity of battery used to 

smooth the four different PV variability based on two smoothing techniques. It also shows that high PV 

variability need highest battery capacity to smooth it. This is due to the fact that high variability has the 

highest peak and trough of power. In this paper, high PV variability battery capacity was used to smooth 

all PV variability types at the Point of Common Coupling (PCC). 

 
(a) 

 
 (b) 

  
(c) 

 

Figure 6: PV power smoothing simulation results for overcast day. (a) PV power output compared to 

polynomial and moving average smoothed curves. (b) & (c) BESS output power for moving average and 

polynomial smoothing. 
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(a) 

  
(b) 

  
(c) 

 

Figure 7: PV power smoothing simulation results for mild variability day. (a) PV power output compared 

to polynomial and moving average smoothed curves. (b) & (c) BESS output power for moving average 

and polynomial smoothing. 

 
(a) 
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(b) 

  
(c) 

 

Figure 8: PV power smoothing simulation results for moderate variability day. (a) PV power output 

compared to polynomial and moving average smoothed curves. (b) & (c) BESS output power for moving 

average and polynomial smoothing. 

 
(a) 

  
(b) 
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(c) 

 

Figure 9: PV power smoothing simulation results for high variability day. (a) PV power output compared 

to polynomial and moving average smoothed curves. (b) & (c) BESS output power for moving average 

and polynomial smoothing. 

Table 5: Maximum capacity of battery in p.u. 

Battery capacity (p.u.) 

PV variability 
Polynomial curve fitting technique Simple moving average technique 

Power (p.u.) Energy (p.u.) Power (p.u.) Energy (p.u.) 

Overcast 0.137 0.357 0.166 0.252 

Mild variability 0.428 0.358 0.398 0.350 

Moderate variability 0.384 0.626 0.345 0.615 

High variability 0.472 0.718 0.459 0.704 

 

(b) Comparison of Smoothing Techniques 

The fundamental research goal is in the determination of the needed BESS capacity for utilization 

together with a PV power system which enables the output of the combined PV power system and BESS 

in fulfilling the connected grid necessities. This refers to the fluctuation of injected power to the grid that 

must be decreased for the improvement of the grid power quality. The comparison of smoothing 

techniques include: the simple moving average technique and the polynomial curve fitting technique. The 

criteria involved in the selection of the smoothing technique entail the power and energy capacities of the 

battery, the battery cost, the maximum demand, the standard deviation of the smoothed power, and the 

total annual cost of losses. The resultant energy capacities and power capacities of the different 

techniques are shown in Table 6 and Table 7, where the simple moving average technique requires lowest 

energy and power capacities of the battery in compared to the polynomial curve fitting technique. The 

cost of energy storage is usually expressed in two units: RM per kW and RM per kWh and calculated 

using Equation (6).  The standard deviation of the smoothed power is defined in Equation (7), for a more 

extensive comparison of the smoothing performance of different smoothing techniques for power quality. 

The standard deviations of smoothed power of various smoothing techniques are indicated in Tables 6 

and 7, where the polynomial curve fitting technique possesses the smallest value. Additionally, the cost of 

annual losses in the distribution system installations is shown in Equation (8). The cost of annual losses in 

the distribution system following the smoothing the PV output power employing the simple moving 

average technique and the polynomial curve fitting technique are shown in Tables 6 and 7, where the two 

techniques show the same values of annual losses. Finally, simulations show that, although the 

polynomial curve fitting technique has the smallest standard deviation, it requires the largest battery 

capacity and cost, and also it produces a highest maximum demand, causing it to be unfit with storage 

technologies as lithium-ion. 

Cost total (RM) = Cost pcs (RM) + Cost storage (RM) (6) 

Where, Cost pcs (RM) = Unit Cost pcs (RM/kW) × P (kW),  Cost storage (RM) = Unit Cost storage (RM/kWh) × 

(E (kWh) / ƞ ). 
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σ = √
∑ (𝑃𝑝𝑣(𝑡𝑖) −  𝑃𝑜𝑢𝑡(𝑡𝑖))2ℎ

𝑖=1

ℎ
 (7) 

Where, σ: Standard deviation of the smoothed power, Ppv: Actual PV power, Pout: Smoothed PV power, h: 

Total number of sampling. 

𝐶𝐿 = 𝑁𝐿 × ∑ 𝑒𝑝(𝑡)

8760

t=1

 (8) 

Where, 𝐶𝐿: Total annual cost of losses (RM/year), NL: Network energy losses (kWh), ep(t): Energy price 

in time period t (RM/kWh). 

Table 6: Comparison of two smoothing techniques based on various criteria for Urban RN with 33 and 

11kV feeders 

Criteria 
Polynomial curve 

fitting technique 

Simple moving 

average 

technique 

Power 

(MW) 
0.161 0.157 

Energy 

(MWh) 
0.245 0.240 

Battery 

cost (RM) 
981172 959898 

Max 

demand 

(MW) 

1.95 1.93 

σ (MW) 0.038 0.039 

Cost of 

losses 

(RM/year) 

575949.8 575949.8 

Table 7: Comparison of two smoothing techniques based on various criteria for Rural RN with 33 and 

11kV feeders 

Criteria 
Polynomial curve 

fitting technique 

Simple moving 

average 

technique 

Power 

(MW) 
0.336 0.327 

Energy 

(MWh) 
0.511 0.501 

Battery 

cost (RM) 
2046543 2002170 

Max 

demand 

(MW) 

2.856 2.755 

σ (MW) 0.079 0.082 

Cost of 

losses 

(RM/year) 

1554840 1554840 
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(c) PV Energy Time Shift 

1) Load Following 

The DIgSILENT software was used to simulate the energy time shift for urban network, as this network 

experiences the problem of mismatch between the PV generation and the local demand. For the 

simulation of the worst case scenario e.g. in instances of low electricity demand, and solar energy 

production is at the highest point, a simulation of a clear sky day is conducted. In order to simulate a clear 

sky day, the needed battery power is 1.258 MW, and the needed battery capacity is 6.878 MWh. Figure 

10 (a) indicates the active power of PV and load, plotted with PCC and net active power. At the times of 

uninterrupted days of sun and low consumption, the difference between electricity demand and PV 

system generation will be the largest, and hence the reverse power flow is anticipated to arrive at its 

maximum value. The BESS for load following charges once the PV system produces greater active power 

as compared to its consumption, and discharges in instances when the demand is greater in comparison to 

its generation. The charging profile for the BESS is indicated in Figure 10 (b). Moreover, the adoption of 

the State of Charge (SOC) estimation utilizing Coulomb counting technique is implemented for the 

management of the active power in the current research. Additionally, in battery energy management, the 

typical minimum and maximum SOC is 10% and 90%, respectively, as shown in Figure 10 (c). As 

observed from the net power curve in Figure 10 (a) the maximum demand decreased from 1.95 MW to 

0.922 MW, showing a decrease of 52.71%. 

 
(a) 

  
(b) 
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(c) 

 

Figure 10: Energy time shift simulation results. (a) Active power of PV and load, plotted with PCC and 

net active power. (b) BESS output power. (c) Battery SOC. 

2) Voltage Rise 

In this section, PV energy time shift was performed on rural network, as this network experiences the 

problem of overvoltage due to reverse power flow, which is typically caused by high PV generation 

output under minimum load conditions. The steady-state voltage fluctuation under the normal condition 

on the medium voltage distribution network in Malaysia is (0.95-1.05 p.u.) ±5% of the nominal value 

[28]. In this part, a clear sky day generation profile was used with battery storage of 6.522 MWh will be 

integrated with each of the PV system unit in the 11kV feeder. Figure 11 (a) shows the active power of 

PV and load, plotted with PCC and net active power. For the purpose of the BESS simulation for voltage 

rise mitigation, the construction of the charging profile was for absorption of the active power that 

resulted in the increase of the voltage as indicated in Figure 11 (b) and is discharged in the evening and 

early morning time. The charging profile is indicated in Figure 11 (c). Through the absorption of the 

active power from the PV system based on the selected charging profile, the increases in voltage in the 

distribution grid that exceeded the permissible limit of 1.05 p.u. are prevented, as shown in Figure 11 (b). 

In addition, Figure 11 (d) shows the SOC profile for each 6.522 MWh BESS. It is observed from the net 

power curve in Figure 11 (a) that the maximum demand decreased from 2.856 MW to 1.698 MW, 

showing a decrease of 40.54%. 

 
(a) 
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(b) 

  
(c) 

  
(d) 

 

Figure 11: Energy time shift simulation results. (a) Active power of PV and load, plotted with PCC and 

net active power. (b) Voltage profile at PCC with and without BESS. (c) BESS output power. (d) Battery 

SOC. 

VI. Conclusion 

This paper presented a number of problems associated with high integration of distributed PV systems 

into Malaysian urban and rural MV reference networks. This includes supply intermittency, reverse 

power flow and voltage rises. The applications of energy storage for mitigating the issues caused by solar 

PV system has been presented. To mitigate the PV power fluctuation problem, two PV power smoothing 

techniques with four different PV variability profiles were considered. Furthermore, two types of BESS 

models were utilized to mitigate the reverse power flow and voltage rise issues. This research has made a 

comparative analysis on the simple moving average and the polynomial curve fitting techniques that were 

implemented to the electric power smoothing control for distributed generation systems. The simulation 

outcomes indicate that the simple moving average technique is much effective to decrease the PV power 

fluctuation in comparison to the polynomial curve fitting technique. The implementation results displayed 
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led us to conclude that the devised PV power smoothing and energy time shift applications were 

successful in performing their respective functions.  
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