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a b s t r a c t 

Structure-texture decomposition smoothing has been extensively studied due to its wide range of appli- 

cations in computational photography and image processing. In this paper, we propose a new structure- 

texture decomposition algorithm which is based on two fundamental ideas: (1) guidance image and (2) 

iterative smoothing. The guidance image is generated by mitigating high-frequency oscillatory compo- 

nents in the original image. The result is then incorporated in a new generic iterative framework which 

makes use of well-known guided edge-reserving filters such as bilateral filter (BF), guided filter (GF), 

domain transform filter (DTF), and the extended Bayesian model averaging filter (BMA) called guided 

Bayesian model averaging filter (GBMA) to achieve texture smoothing. We have presented a detailed 

study of the proposed algorithm including: guidance image generation, an evaluation of the guided edge- 

preserving filters which are incorporated in the proposed iterative framework, the number of iterations 

for the proposed iterative structure, and the selection of guided edge-preserving filter. We demonstrate 

that the proposed method is a flexible and effective tool for a wide range of image editing applications 

including: image abstraction, color pencil drawing, content-aware image resizing, and texture editing. In 

particular, the proposed approach has the best performance in structure-texture decomposition for an 

image with low-contrast features. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Natural scenes contain objects of various patterns on a 

broad spatial scales. Small-scale components typically represent 

texture/noise, while large-scale components generally represent 

salient objects/distinctive boundaries. All the aforementioned fea- 

tures are very important for human perception. In machine vi- 

sion, extracting meaningful salient objects from a highly correlated 

background is an essential task. Using a structure-texture decom- 

position filter, an image can be separated into two independent 

components: f = u + v , where f , u and v represent the input im- 

age, structure components and texture components, respectively. 

Similar to structure-texture decomposition filters, edge- 

preserving filters can also be used as an image decomposition 

tool. The basic idea of utilizing an edge-preserving filter is to 

separate an image into two layers, the base layer (prominent 

objects) and the detail layer (small-scale details). There are many 

edge-preserving filters including: bilateral filter [1] , guided filter 

[2] , L 0 -smoothing filter [3] , bi-exponential filter [4] , BMA filter 

✩ This article was recommended for publication by M. Kim. 
∗ Corresponding author at: Department of Engineering, La Trobe University, Bun- 

doora, Victoria 3086, Australia. 

E-mail address: m.al-nasrawi@latrobe.edu.au (M. Al-nasrawi). 

[5] , static-dynamic guidance filter [6] , semi-guided bilateral filter 

[7] and adaptive interpolation filter [8] . These filters tend to 

smooth out small details while maintaining distinctive structures. 

However, they are not explicitly designed to address the structure- 

texture decomposition problem. An edge-preserving filter may 

regard texture information as strong edges which are preserved. 

This leads to texture preservation and unsatisfactory results may 

be obtained. 

To solve this problem, many structure-texture decomposition 

filters have been developed by researchers to address the tex- 

ture elimination task. These filters include: local extrema filter 

(LE) [9] , relative total variation (RTV) [10] , rolling guidance filter 

(RGF) [11] , region covariances filter (RCF) [12] , bilateral texture fil- 

ter (BTF) [13] , scale-aware texture smoothing (SATS) [14] , Laplacian 

texture filter (LTF) [15] , zero crossing structure decomposition fil- 

ter (ZCSD) [16] , second neighbor anisotropic diffusion filter (SNAD) 

[17] and relative reductive regression filter (RRRF) [18] . In addi- 

tion to structure-texture decomposition, these filters are broadly 

utilized in many applications, such as JPEG artifact removal [15] , 

hatching and image abstraction [19] , seamless image cloning and 

image vectorization [10] , seam carving [12] , and image inpainting 

[20] . 

Inspired by the current development of aforementioned fil- 

ters and their valuable applications, the aim of this work is to 

https://doi.org/10.1016/j.cag.2018.12.008 

0097-8493/© 2019 Elsevier Ltd. All rights reserved. 
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investigate a new way for the development of guided edge- 

preserving filters which will lead to improved performance in 

terms of handling the presence high-frequency oscillatory com- 

ponents in an image. In the following, we briefly review two 

fundamental ideas which are related to our work: using guidance 

information and iterative smoothing. 

Using guidance information: Guidance information from the in- 

put image or another image can be exploited to guide the filtering 

process to achieve edge-preserving smoothing. There are two types 

of guidance: implicit guidance and explicit guidance. Examples of 

implicit guidance filters are the joint bilateral filter (JBF) [21] and 

the recursive bilateral filter (RBF) [22] . In the JBF, the range ker- 

nel weight is obtained by utilizing the guidance image. In the RBF, 

the range kernel weight in the current iteration is calculated us- 

ing the output from the previous iteration. On the other hand, the 

guided filter (GF) [2] is an example of an explicit guidance filter. In 

the GF, it is assumed that the image to be filtered is locally related 

to the guidance image in a linear way. In addition to good edge- 

preserving properties, details from the guidance image are trans- 

ferred to the output image. This is a desirable properties for image 

feathering [2] . 

Iterative smoothing: In the edge-aware smoothing, the idea is to 

combine smoothing with edge recovery. It can be implemented it- 

eratively by using an edge-preserving filter and introducing a guid- 

ance image [23] . An example of this is the RGF [11] which involves 

two steps. In the first step, small details are completely eliminated 

from the original image by a Gaussian filter. In the second step, 

the result from the first step is used as a guidance image in the 

JBF [21] to smooth the original image. A recent example is the 

smooth and iteratively restore filter (SIRF) [24] , which follows a 

similar idea as that of the RGF. The SIRF iteratively restores distinc- 

tive edges from the smoothed image. The RGF and the SIRF have 

been successfully utilized in many applications such as scale-aware 

smoothing and texture smoothing. 

This work is motivated by the fundamental ideas of using the 

guidance information and iterative smoothing. One key idea of this 

paper is to extend the Bayesian model averaging filter (BMA) [5] to 

guided Bayesian model averaging filter by integrating the guidance 

image into the BMA. Another key idea is based on the well-known 

guided edge-preserving filters and iterative smoothing. The pro- 

posed approach is implemented in two steps. In the first step, pre- 

smoothing is used to reduce the high-frequency texture informa- 

tion. The result is then processed by one of the commonly used 

guided edge-preserving filters such as guided Bayesian model av- 

eraging filter GBMA, bilateral filter (BF) [1] , guided filter (GF) [2] , 

and domain transform filter (DTF) [25] . This work is similar to the 

RGF [11] . The key difference between this work and those based 

on the RGF is that in this work, the filtering weight in the range 

kernel is calculated from the guidance image only once and the 

resultant image is iteratively filtered from the previous iteration, 

whereas in the RGF, the filtering weight in the range kernel is it- 

eratively updated to filter the original image. In addition, our ap- 

proach has the advantage of avoiding rounded edges in large edge 

structures and blocking effects in small-scale details which appear 

in the RGF. Such undesirable effects are due to Gaussian smoothing 

used to generate the guidance image. 

The organization of this paper is summarized as follows. 

In Section 2 , we first briefly review edge-preserving filters. In 

Section 3 , we present the proposed structure-texture decomposi- 

tion method, including the general iterative structure, the guided 

Bayesian model averaging and other guided edge-preserving filters, 

guidance image generation, evaluation of guided edge-preserving 

filters under different parameter settings, the optimal number 

of iteration, and selection of guided edge-preserving filter. In 

Section 4 , through an analysis of experiment results and a compar- 

ison with the state-of-the-art algorithms, we demonstrate that the 

proposed algorithm is an effective and flexible tool in a wide 

range of applications including texture smoothing, content-aware 

image resizing, color pencil sketching, image abstraction, and tex- 

ture editing. We also demonstrate that the performance of the pro- 

posed approach is competitive to the state-of-the-art algorithms. 

Conclusions are given in Section 5 . 

2. Related work 

Many edge-preserving smoothing techniques have been pro- 

posed to separate an image into a structural layer and a textu- 

ral layer. In the following, we briefly review previous works in 

the area of structure-texture smoothing relating to the proposed 

approach. 

2.1. Bayesian model averaging 

Bayesian model averaging (BMA) is an edge-aware smoothing 

filter which smooths out fine details in an image while preserv- 

ing edges. It was firstly developed by Deng [5] as a solution to an 

optimal estimation problem. The basic idea of the BMA is to esti- 

mate a pixel value that belongs to multiple overlapped patches by 

combining their estimates into a final filtered value. 

Notations: To make the notations clear, let I and Y be the input 

image and the output image. We use the subscript to identify the 

k th patch of the input image. The patch mean μk is calculated from 

the input image I for the k th patch. 

The BMA is defined by the following equations 

Y = 

M ∑ 

k =1 

αk βk μk + 

( 

1 −
M ∑ 

k =1 

αk βk 

) 

I, (1) 

βk = 

Nσ 2 
o 

(Nσ 2 
o + σ 2 

k 
) 
, (2) 

αk = 

c 

σ 2 
k 

+ ε
, (3) 

where σ k is the sample variance for k th patch, σ 2 
o is a user spec- 

ified parameter, N is the number of pixels in a local patch, c is 

a normalization factor such that 
∑ 

αk = 1 , and ε is a small num- 

ber to avoid dividing it by zero. The parameters σ k and μk are 

obtained from the input image. Therefore, the BMA filter can be 

called a self-guided BMA. 

2.2. Bilateral filter 

The BF can be expressed as follows: 

Y p = 

1 

C p 

∑ 

q ∈ �p 

exp 

(
−|| p − q || 2 

2 σ 2 
s 

)
exp 

(
−| A p − A q | 2 

2 σ 2 
r 

)
I q , (4) 

and 

C p = 

∑ 

q ∈ �p 

exp 

(
−|| p − q || 2 

2 σ 2 
s 

)
exp 

(
−| A p − A q | 2 

2 σ 2 
r 

)
, (5) 

Where Y p , I p and A p are pixels of the output, input images and 

guidance at location p , respectively. C p is the normalization factor. 

�p denotes the neighborhood of pixel p . The two parameters σ r 

and σ s are the scale parameters that control the spatial and range 

weights, respectively. 

An extension of BF is the joint bilateral filter (JBF) which was 

initially proposed by Petschnigg et al. [21] and later revisited 

by Eisemann et al. [26] . While in traditional BF the photometric 

weight is computed from the input image denoted I ( A = I ), in JBF 

this weight is computed from a guided image denoted G ( A = G ). 
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Fig. 1. Block diagram of (a) RGF and (b) proposed framework. Z −1 denotes a delay function. 

2.3. Guided filter 

The guided filter (GF) [2] is a local neighborhood filter which 

assumes the smoothed output Y is a linear transformation of the 

guidance image G in a local patch �p centred at pixel location p : 

Y q = a p G q + b p , ∀ q ∈ �p (6) 

where �p is a square-patch of size (2 r + 1) × (2 r + 1) , and the 

linear coefficients a p and b p are determined by minimizing the 

following objective function:. 

E(a p , b p ) = 

∑ 

q ∈ �p 

(
(a p G q + b q − I q ) 

2 + εa 2 p 
)
, (7) 

where ε is a regularization parameter specified by user. The fil- 

tered output of the guided filter can be written as: 

Y q = ā q I q + ̄b q , (8) 

where ā q = 

1 
| �| 

∑ 

p∈ �q 
a p and b̄ q = 

1 
| �| 

∑ 

p∈ �q 
b p are the average 

coefficients values of all patches which contain pixel I q . 

2.4. Domain transform filter 

The domain transform filter replaces the evaluation of compu- 

tationally expensive edge-preserving kernels in 5-D with a domain 

transformation t and a lower dimension H. It can be written as 

Y p = 

∫ 
�
F ( ̂  p , ̂  q ) I q dq = 

∫ 
�
H(t( ̂  p ) , t( ̂  q )) I q dq, (9) 

where Y p and I q are the outputs and the input images, respectively. 

F and H are edge-preserving kernels. ˆ p and ˆ q are points on a 2-D 

manifold in R 

5 . The isometric 1-D domain transform defined as 

t(u ) = 

∫ u 
0 

1 + 

σs 

σr 

c ∑ 

k =1 

| A ′ k (x ) | dx , (10) 

where A ′ 
k 
denotes the derivative of the input image A with respect 

to x , c is the number of channels in an image. σ s is the variance 

of the kernel H over the signal’s spatial domain �, and σ r is the 

variance of the kernel H over the signal’s range. 

To perform the domain transform filter efficiently, the box 

kernel is defined as 

H(t( ̂  p ) , t( ̂  q )) = δ{| t( ̂  p ) − t( ̂  q ) | � r} , (11) 

where the neighborhood size of the filter is defined as r , and and 

δ is a Boolean function which yields 1 when its argument is true, 

and 0 otherwise. 

3. The proposed algorithm 

There are two key steps in the proposed approach, shown in 

Fig. 1 (b). A guidance image is first generated by filtering an image 

with a simple filter. The result is then incorporated in the proposed 

iterative structure to guide the smoothing process which is imple- 

mented using the well-known guided edge-preserving filters such 

as BF, GF, DTF, and the proposed GBMA which will be explained 

in the next subsection. We also provide a detailed discussion on 

guidance image generation, the stopping criterion for the iteration, 

selection of guided edge-preserving filters, and the response of the 

proposed iterative framework under different parameter settings. 

3.1. The proposed guided Bayesian model averaging 

In this section, we give a brief description of the GBMA which 

is used in this paper. 

Contrary to the self-guided BMA which is presented in 

Section 2.1 , an external-guided BMA can be obtained when the 

parameters σ k and μk are computed from the guidance image 

( G ). The self-guided BMA can be deemed a special case of the 

external-guided BMA filter. 

The key idea of adopting the guidance image information is 

to constrain the smoothing process by making use of the infor- 

mation in the guidance image because both the guidance image 

and the image to be filtered have a physical relation. For instance, 

in flash/no-flash denoising application using JBF [21] , the guidance 

image G is chosen as the same scene as I , yet with the flash light 

condition. As such, the guidance image can be considered as a 

proximate structure of the original image. In BMA, we can exploit 

this properties and use the guidance image to estimate the sample 

mean μk and variance σ k . The key idea is that the parameter σ k 

estimated from the guidance image would provide a better estima- 

tion than that estimated from the original image. This would lead 

to better filtering results. 

3.2. The general iterative structure of the proposed framework 

The general structure of the proposed framework follows that of 

the guided edge-preserving filters ( EPF ) and an iterative method. 

It can be formulated based on the well-known guided edge- 

preserving filters such as BF, GF, DTF and the proposed GBMA, 

which is presented in Section 3.1 . In general, we can define the 

edge-preserving process as a generic smoothing function EPF ( I , A ) 

that takes two inputs, namely an image to be filtered I and a 

guided image A . The filtering process can be expressed as 

Y = EP F (I, A ) , (12) 
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Fig. 2. Structure-texture smoothing results from RGF and our method on “Batman” image. Our approach is able to suppress texture while well preserving the large-scale 

structures similar to the original edges compared with RGF, as denoted by the yellow square in the last column. The proposed method and RGF have same parameter settings 

( σr = 0 . 15 , σs = 4 , and N iter = 4 ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Structure-texture smoothing results from RGF and our method on “Fish” image. Our approach is able to suppress texture without introducing blocking artifacts 

compared with RGF, as denoted by the yellow square in the last column. The proposed method and RGF have same parameter settings ( σr = 0 . 09 , σs = 3 , and N iter = 4 ). (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4. Results of the proposed approach using different filters as a pre-smoothed stage to obtain the structure-texture decomposition response. 

where the above function can be used to represent the filter 

output of self-guidance as Y = EP F (I , I ) when A = I and external- 

guidance as Y = EP F (I, G ) , when A = G ( G is the guidance image). 

We can iteratively implement the proposed framework by follow- 

ing similar idea as the rolling guidance filter (RGF) [11] . Let Y ( n ) 

indicate the filter output at n th iteration ( n ≥1) which can be 

written as the following 

Y (n +1) = EP F (Y (n ) , G ) , (13) 

where Y (0) = I, and G is the guidance which can be obtained from 

a simple smoothing filter such as Gaussian low-pass filter, average 

filter, and median filters. To highlight the difference between the 

proposed framework and the rolling guidance filter (RGF), we can 

describe the RGF as follows 

Y (n +1) = RGF (I, Y (n ) ) , (14) 

where Y (0) = 0 . The key difference between the proposed frame- 

work and the RGF is that in the RGF, the guidance image is iter- 

atively updated in each iteration, while the image to be filtered 

remains the same. In the proposed framework, the guidance image 

remains the same, while the input image is iteratively updated. The 

block diagrams of the proposed framework and the RGF are shown 

in Fig. 1 . 

3.3. Comparison to RGF 

Generally, the proposed filter and RGF share similar idea which 

comprises two steps. The first step is to eliminate small-scale 

structures (textures). In the second step, a guided edge-preserving 

filter is used to handle the large-scale structures (distinctive ob- 

jects). However, they are different in terms of implementing this 

idea. In the proposed approach, the smoothing weight in the range 

kernel is determined from the guidance image only once and it- 

eratively filtering the resultant image from the previous iteration. 

On the other hand, RGF does the opposite. In the RGF, the smooth- 

ing weight in the range kernel is iteratively updated to filter the 

original image. 

Another key difference is in guidance image properties. In RGF, 

the guidance image is generated by using a Gaussian filter to re- 

move the texture components. However, this process not only blurs 

the textures but also severely degrades the image’s structure as 

well. This leads to two defects, producing rounded edges (non- 

articulated restoration of large-scale edges), and blocking artifacts 

in small-scale details (blocked artifacts the textures areas). Such ef- 

fects are illustrated in the second rows in Figs. 2 and 3 , respectively. 

On the other hand, in the proposed method, the guidance image 

should be reasonably generated (not necessary removing all tex- 

ture components) while preserving the distinctive objects similar 

to the original image. This results in producing better edges with- 

out introducing blocking artifacts. This results in the third rows in 

Figs. 2 and 3 , respectively. 

3.4. Guidance image generation 

In the proposed algorithm, a pre-smoothing step is required to 

generate a guidance image which should have a relatively flat area 

in homogeneous texture regions and preserve prominent struc- 

tures. More specifically, the guidance image can be deemed as a 

proximate structure of the original image. The Gaussian filter tar- 

gets image structures at a certain scale. Structures with a scale 

smaller than the scaling parameter of the Gaussian filter will be 

smoothed out. Inspired by this property, we follow a similar idea 

to mitigate the effect of texture components. 

To obtain the guidance image, an interesting question is: what 

would be the best filter to generate the guidance image? We per- 

form experiments using three simple filters: Gaussian low-pass 

filter, average filter, and median filter. 
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Fig. 5. Different parameter settings of the pre-smoothed image utilizing median filter, Gaussian filter, and average filter in the proposed iterative framework which adopts 

BF as a guided edge-preserving filter. The SSIM and PSNR were employed to evaluate the image quality in Fig. 20 . The first row and the second row show the SSIM and the 

PSNR of the image resulted from the proposed algorithm, respectively. 

We create a 1-D signal which has variable structures. This sig- 

nal is used as the ground truth. Then, we add an artificial tex- 

ture to the signal. The resulting signal is processed by one of the 

three aforementioned filters. The radius of the neighborhood for 

the median filter and the average filter are r m 

= 3 and r a = 3 , re- 

spectively. The scale parameter of the Gaussian kernel is σg = 0 . 8 . 

Results from the pre-smoothed filters are used as the guidance im- 

age. We tune the parameters of these filters in such a manner that 

they produce the highest structure similarity index (SSIM) [27] and 

peak-signal-to-noise-ratio (PSNR). From Fig. 4 , we make the follow- 

ing observations. The results of the proposed method that are as- 

sociated with the median filter have the highest SSIM and PSNR. 

Thus, the median filter is adopted to produce the guidance image 

in the proposed approach. 

We also study the performance of the proposed approach un- 

der different parameter settings of the pre-smoothed filters and 

the guided edge-preserving filters on image. Similar to the 1-D 

signal generation, we add texture information to a texture-free 

image (ground truth image) to simulate the texture components, 

as shown in Fig. 20 (b). The resulting image will be smoothed by 

pre-smoothed filters. The parameters of the aforementioned pre- 

smoothed filters as well as the guided edge-preserving filters are 

tuned to yield different smoothing results. The corresponding PSNR 

and SSIM of these results are shown in Figs. 5–8 . We can make 

the following observations. The PSNR and SSIM of the proposed 

framework which utilizes the median filter and the average filter 

are close to each other. These results are summarized in Table 1 . 

Since the median filter has a good edge-preserving ability. Thus, 

the median filter will be adopted as the pre-smoothing filter to 

generate the guidance image. 

3.5. Evaluation of filters 

In this section, we present the results of the proposed frame- 

work under different parameter settings of the four different 

guided edge-preserving filters. Since the proposed framework is 

iterative, we conducted all experiments on each filter for a fixed 

number of iterations. 

3.5.1. GBMA 

The GBMA has two parameters, σ 2 
o (the variance of the prior 

distribution) and r (the patch radius). It is clearly seen from Fig. 9 

that for small values of σ 2 
o , the small-scale detail/texture and 

prominent structures are preserved, while for larger values of r , 

distinctive objects as well as small-scale structures are smoothed 

out. 

3.5.2. BF 

In Fig. 10 , we illustrate the results of using BF under different 

settings. There are two parameters in BF. They are the spatial scale 

parameter σ s and the range scale parameter σ r . We can clearly 

observe from Fig. 10 that when σ r is relatively small, small details 

such as tiles and flowers are preserved. A larger value of σ s will 

result in smoothing out distinctive objects such as the angel’s face 

as well as the detail on the wings. 

3.5.3. GF 

We evaluate the effect of different parameter settings of GF, as 

shown in Fig. 11 . The GF has two parameters ε (regulation parame- 

ter) and r (patch radius). Setting a large value of r leads to fine de- 

tail as well as significant edges being blurred. On the other hand, 

setting a relatively small value of ε leads to the smoothing out of 

small-scale/texture while preserving the image’s distinctive objects. 

3.5.4. DTF 

In Fig. 12 , we present results of using DTF for different 

combinations of the spatial parameter σ s and the range parame- 

ter σ r . We can observe from this figure that when σ s is relatively 

large, sharp edges and small-scale details are blurred. On the other 

hand, setting a smaller value of σ r leads to texture preservation. 
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Fig. 6. Different parameter settings of the pre-smoothed image utilizing median filter, Gaussian filter, and average filter in the proposed iterative framework which adopts 

GBMA as a guided edge-preserving filter. The SSIM and PSNR were employed to evaluate the image quality in Fig. 20 . The first row and the second row show the SSIM and 

the PSNR of the image resulted from the proposed algorithm, respectively. 

Fig. 7. Different parameter settings of the pre-smoothed image utilizing median filter, Gaussian filter, and average filter in the proposed iterative framework which adopts 

GF as a guided edge-preserving filter. The SSIM and PSNR were employed to evaluate the image quality in Fig. 20 . The first row and the second row show the SSIM and the 

PSNR of the image resulted from the proposed algorithm, respectively. 

3.6. Stopping criterion and guided edge-preserving filters selection 

3.6.1. Stopping criterion 

As the number of iterations n increases, the results of the pro- 

posed framework eventually converges into a constant image. The 

output image might reach the unsatisfactory results. Therefore, 

knowing the number of iterations that yields an optimal trade- 

off between texture removal and structure preservation is impor- 

tant. We develop a stopping criterion leading to a smoothed image 

which has salient object features similar to the original image. To 

study the stopping criterion, we recall the well-known total vari- 

ation (TV) algorithm [28] which has the cost function defined as: 
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Fig. 8. Different parameter settings of the pre-smoothed image utilizing median filter, Gaussian filter, and average filter in the proposed iterative framework which adopts 

DTF as a guided edge-preserving filter. The SSIM and PSNR were employed to evaluate the image quality in Fig. 20 . The first row and the second row show the SSIM and 

the PSNR of the image resulted from the proposed algorithm, respectively. 

Fig. 9. Effect of setting different values of σ o and r on the proposed method which adopts GBMA as a guided edge-preserving filter in the proposed framework. The number 

of iterations ( n = 10 ). 
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Fig. 10. Effect of setting different values of σ r and σ s on the proposed method which adopts BF as a guided edge-preserving filter in the proposed framework. The number 

of iterations ( n = 10 ). 

Table 1 

The best PSNR and SSIM of the image in Fig. 20 . 

Edge-preserving filters Measure Median ( r m = 1 ) Gaussian ( σ = 0 . 5 ) Average ( r a = 1 ) 

BF ( σr = 0 . 02 , σs = 1 ) PSNR 84.435 83.167 84.430 

SSIM 0.9782 0.9738 0.9778 

GBMA ( σo = 3 , r = 0 . 001 ) PSNR 77.027 75.679 77.012 

SSIM 0.9418 0.9312 0.9411 

GF ( ε = 0 . 001 , r = 3 ) PSNR 79.577 78.552 79.517 

SSIM 0.9548 0.9512 0.9508 

DTF ( σr = 0 . 1 , σs = 10 ) PSNR 83.700 82.218 83.700 

SSIM 0.9718 0.9649 0.9711 

J(n ) = || I (0) − I (n ) || 2 2 + λ||∇ I (n ) || 1 , (15) 

where I ( n ) is the smoothed image from our framework, I (0) is the 

original image, n is the number of iterations, λ is the regularization 

parameter, and || ∇I ( n ) || 1 is the magnitude of the gradient. To obtain 

desirable structure-texture decomposition results, Eq. (15) forces 

the output image to meet the following requirements: (1) it must 

be close to the original image, and (2) it must be flat in the tex- 

tured area and have distinctive edges at the image object bound- 

aries. Using this cost function, we can develop a stopping crite- 

rion for the proposed approach. We incorporate the four different 

guided edge-preserving filters which are BF, GF, DTF, and GBMA in 

our iterative framework. We then conduct experiments using the 

proposed method and compare the results with the RGF. For each 

guided edge-preserving filter including the RGF, the cost function 

(15) is calculated for the output in each iteration. Using the “Fish”

image shown in Fig. 16 (a), Fig. 13 shows the cost as a function 

of the number of iterations obtained under different parameter 

settings (parameters of the guided edge-preserving filters, the RGF, 

and the regularization parameter of the cost function λ). We can 

clearly see that every filter has a different minimum cost which 

represents the optimal structure-texture decomposition. The min- 

imum cost of BF, GF, DTF, and GBMA are (0.5335, 0.6342, 0.6772, 

and 0.6916) and their corresponding iterations are (10, 19, 5, and 

16), respectively. On the other hand, the minimum cost of the RGF 

is 0.8520 which occurs at iteration 4. The key difference between 

the RGF and the proposed method is that although the RGF needs 

less iterations to converge, the cost of the RGF is higher than the 

proposed algorithm. Since the BF has the smallest cost among all 

filters tested, it is adopted to produce the structure-texture decom- 

position smoothing result in the proposed method. 

We also conduct further experiments using our iterative frame- 

work on ten different texture images. Fig. 14 shows the average 

costs J ( n ) over ten images. To simplify our experiment, we fixed 

λ = 0 . 4 and determine the cost as a function of iterations ( n ). We 

can clearly see in Fig. 14 that for BF, GF, DTF and GBMA, the mini- 

mum cost occurs at four different iterations ( n = 15 , n = 17 , n = 6 , 
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Fig. 11. Effect of setting different values of ε and r on the proposed method which adopts GF as a guided edge-preserving filter in the proposed framework. The number of 

iterations ( n = 10 ). 

and n = 7 , respectively). At these iterations, the resultant images 

will achieve the best results in terms of texture removal while pre- 

serving significant edge information similar to the original image. 

Therefore, we can choose the iterations ( n ) which correspond to 

the minimum costs as a stopping criterion. We also note that pa- 

rameter λ is not required in the proposed approach, but is utilized 

to experimentally calculate the stopping criterion. 

3.6.2. Guided edge-preserving filters selection 

In this section, we experimentally demonstrate that the pro- 

posed algorithm can be used as a flexible tool in structure- 

texture decomposition by adopting different types of guided edge- 

preserving filters. We compare results of the proposed framework 

using four different guided edge-preserving filters. By carefully 

tuning their parameters, these filters produce similar structure- 

texture decomposition effects. To highlight the difference between 

the four guided edge-preserving filters, we conduct an experiment 

on a 1-D signal which has variable structures. We divide the 1-D 

signal into three regions. Each region in the resultant signals are 

compared with their corresponding regions in other signals. The 

three regions are illustrated in Fig. 15 : a texture + shading (right 

bar), a distinctive structure edge (middle bar), and a texture re- 

gion (left bar). In Fig. 15 (right bar), we can clearly observe that 

while the results for BF, GF, and GBMA are similar, the results for 

DTF have a small jaggedness. On the other hand, for the region of 

the signal with the distinctive edge (middle bar), DTF and GBMA 

produce similar outputs in which the distinctive edges are pre- 

served. It is also noted that BF produces sharp edges, while GF 

produces blurry edges. In the texture region (left bar), it is clearly 

seen that the results of all the filters are similar in terms of texture 

removal. In summary, of the four filters, the BF produces sharper 

and jagged-free edges. 

To further highlight the difference visually, we conduct an ex- 

periment on images to extract structures from a highly correlated 

background. The results are shown in Fig. 16 . It can be clearly seen 

that all filters successfully eliminate the repetitive textures while 

preserving the prominent structures. However, the GF blurred the 

significant edges. 

3.7. Summary 

Guided edge-preserving filters can be implemented in the same 

structure shown in Fig. 1 and produce different structure-texture 

smoothing results. The BF produces the best results in terms of 

texture smoothing. This is confirmed by the largest SSIM and PSNR 

which are presented in Figs. 4, 5 , and Table 1 . It also achieves the 

minimum cost measured by the total variation, as shown in Figs. 

13 (a) and 14 . Fig. 15 shows that the BF provides a good trade-off

between texture smoothing and edges preservation without intro- 

ducing jagged and blurred edges. In addition, the overall structure 

of the resultant signal is similar to the original signal. Therefore, 

the BF is chosen to demonstrate the applications of the proposed 

method in the next section. 

4. Results and comparisons 

All experiments were conducted using a PC with an Intel- 

i7 processor running at 3.40 GHZ with 32 GB RAM. MATLAB is 

utilized as the programming language. 
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Fig. 12. Effect of setting different values of σ s and σ r on the proposed method which adopts DTF as an edge-preserving filter in the proposed framework. The number of 

iterations ( n = 10 ). 

Table 2 

A comparison of the running time (seconds) results of the proposed method 

using BF, DTF, GF and GBMA which produce texture smoothing of images in 

Figs. 16 (a) (“Fish” image), 18 , and 19 , respectively. 

Example Img. size BF DTF GF GBMA 

Fig. 16 600 ×450 0.62 16.00 0.92 0.31 

Fig. 18 640 ×454 0.66 18.42 1.00 0.33 

Fig. 19 639 ×640 1.05 26.02 1.34 0.54 

4.1. Convergence analysis 

In this study, we test the convergence of the proposed algo- 

rithm utilizing BF, GF, DTF, and GBMA. Results for the “Fish” im- 

age are shown in Fig. 17 . The convergence is measured by the cost 

function ( Eq. (15) ). As the number of iterations increase, the resul- 

tant image converges to a flat image. More intuitively, referring to 

Eq. (15) , the smoothed image I ( n ) reaches the mean value. On the 

other hand, the second term in Eq. (15) approaches zero. This leads 

to a constant cost J ( n ) when n → ∞ . 

4.2. Running time 

Table 2 shows a comparison of the running time of the pro- 

posed approach which uses BF, DTF, GF, and GBMA. The running 

time of the proposed filter is calculated by adding the running 

time of the pre-smoothed filter to the running time of the guided 

edge-preserving filter. From Table 2 , we can clearly see that GBMA 

is faster than DTF, GF, and BF. It is also worth mentioning that 

in our implementation we employ the bilateral grid [29] which is 

among the fastest implementation of bilateral filter. 

In Table 3 , we also compare the running time for the various 

algorithms to process the images in Figs. 16 (a) (“Fish” image), 18 , 

and 19 , respectively. The experiments show that the running time 

of the proposed filter is faster than the relative total variation filter 

(RTV) [10] , rolling guidance filter (RGF) [11] , bilateral texture filter 

(BTF) [13] , spanning tree filter (STF), static and dynamic guidance 

filter (SDF) [6] , interval gradient filter (IGF) [30] , and scale-aware 

filter (SAF) [14] . 

4.3. Applications 

Extracting a meaningful structure from a highly-textured scene 

is an important step in many applications. In this section, we 

present applications in image structure-texture decomposition, im- 

age abstraction, pencil drawing, content-aware image resizing, and 

editing. 

4.3.1. Structure-texture decomposition 

We experimentally demonstrate that the proposed approach 

can be used as an effective tool in structure-texture decomposition 

smoothing. In Fig. 18 , we compare our approach with a number 

of state-of-the-art structure-texture decomposition algorithms, in- 

cluding relative total filter (RTV) [10] , rolling guidance filter (RGF) 

[11] , spanning tree filter (STF) [31] , bilateral texture filter (BTF) 

[13] , static and dynamic guidance filter (SDF) [6] , scale-aware filter 

(SAF) [14] , and interval gradient filter (IGF) [30] . To produce results 

for these algorithms, we manually tune parameters such that the 

prominent structures in different scales are preserved and textures 

are eliminated. 

The results are shown in Fig. 18 . In the texture regions denoted 

by the red rectangles. It can be clearly observed that the results 
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Fig. 13. Cost functions J ( n ) for different guided edge-preserving filters (BF, GF, DTF, GBMA, and RGF) under different parameter settings using “Fish” image which is shown 

in Fig. 16 (a). 
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Fig. 14. Cost function J ( n ) averaged over the 10 test texture images for four differ- 

ent guided edge-preserving filters (BF, GF, DTF, and GBMA) and the regularization 

parameter λ = 0 . 4 . For each edge-preserving filter, the minimum cost J ( n ) which 

occurs at iterations 15, 17, 6, and 7, respectively. 

of RTV, RGF, BTF, STF, IGF, and SAF fail to smooth out the textures. 

They also blur the small-scale structures, which are denoted by the 

blue rectangles in Fig. 18 . We can also see that our result is com- 

petitive with SDF in terms of texture elimination and outperforms 

it in terms of preserving the small-scale structures, as shown in 

Fig. 18 (f) and (i). On the other hand, the proposed algorithm runs 

11-times faster than SDF. It is also worth mentioning that both STF 

and the proposed filter produce results which are free of the stair- 

case artifacts. Such artifacts appear in results of other filters (see 

Mona Lisa’s cheek). In summary, the proposed approach achieves 

better trade-off between texture smoothing and structure preser- 

vation without introducing staircase effects. 

We also demonstrate that the proposed algorithm can be used 

in structure-texture decomposition for an image with low-contrast 

details. In Fig. 19 , it can be clearly seen that our filter preserves the 

low-contrast features better than RTV, RGF, BTF, SDF, IGF, and SAF, 

especially details such as eyelashes and hair, as indicated by the 

red and blue squares in Fig. 19 (i). On the other hand, STF achieves 

comparable results to our result except that our result has better 

contrast than STF in terms of overall appearance. 

We also provide an objective evaluation for the proposed ap- 

proach. The quantitative evaluation has been made by adding tex- 

ture components to a texture-free image which is employed as the 

ground truth. An example is illustrated in Fig. 20 . In this experi- 

ment, parameters of each filter are purposely tuned to produce an 

output such that it preserves the global structures and eliminates 

the texture components as much as possible. The peak-signal- 

to-noise-ratio (PSNR) and the structure similarity index (SSIM) 

[27] are used to measure the quality of the structure-texture 

smoothing performance. The qualitative evaluation of the proposed 

method is confirmed by the largest PSNR and SSIM associated with 

our results. The PSNR and SSIM values shown in Table 4 show that 

our algorithm outperforms RTV, RGF, BTF, STF, SDF, IGF, and SAF. 

4.3.2. Image abstraction 

The non-photorealistic rendering algorithm [32,33] obtains 

the stylization effect by removing the low-contrast features of an 

image while maintaining the high-contrast content by utilizing 

an edge-aware filter. The extracted prominent edges are over- 

laid on the smoothed image to generate a cartoon-like of the 

image. We find that abstracting an image by smoothing out the 

small-scale elements rather than the low-contrast features while 

maintaining the large-scale structure objects can achieve better 

Fig. 15. A comparison of the proposed algorithm for filtering a 1-D signal using different edge-preserving filters. 
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Fig. 16. A comparison of the proposed algorithm’s results using different guided edge-preserving filters. 

Fig. 17. The convergence of the proposed algorithm results using different guided edge-preserving filters. 

Table 3 

Running time (seconds) of texture smoothing experiments of images in Figs. 18, 19 , and 16 (a) 

(“Fish” image), respectively. Results of the proposed filter using BF are listed in the last column. 

Example Img. size RTV RGF BTF STF SDF IGF SAF Proposed 

Fig. 16 600 ×450 2.03 1.10 10.75 0.62 6.83 5.11 1.64 0.62 

Fig. 18 640 ×454 2.09 1.53 35.28 0.89 6.87 7.13 1.37 0.66 

Fig. 19 639 ×640 2.49 1.50 15.83 1.34 6.93 9.44 2.44 1.05 
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Fig. 18. A comparison of the structure-texture decomposition results for the “Mona Lisa” image with a number of state-of-the-art algorithms. (a) Original image, (b) RTV ( σ = 

3 , λ = 0 . 01 , ε = 0 . 02 , N iter = 4 ), (c) RGF ( σr = 0 . 07 , σs = 3 , N iter = 10 ), (d) BTF ( k = 3 , N iter = 10 ), (e) STF ( σs = 3 , σr = 0 . 01 , σ = 0 . 06 , N iter = 4 ), (f) SDF ( σ = 0 . 5 , μ = 70 , ν = 

300 , λ = 50 , steps = 5 ), (g) IGF ( σ = 1 . 5 , ε = 0 . 03 2 ), (h) SAF ( σ = 3 . 5 , σr = 0 . 05 , N iter = 3 ), (h) Our filter using BF ( σs = 4 , σr = 0 . 1 , N iter = 5 ). 



96 M. Al-nasrawi and G. Deng / Computers & Graphics 79 (2019) 81–100 

Fig. 19. A comparison of the structure-texture decomposition results of the proposed method with a number of state-of-the-art algorithms. (a) Original image, (b) RTV 

( σ = 2 , λ = 0 . 005 , ε = 0 . 02 , N iter = 4 ), (c) RGF ( σr = 0 . 035 , σs = 4 , N iter = 8 ), (d) BTF ( k = 3 , N iter = 3 ), (e) STF ( σs = 3 . 5 , σr = 0 . 03 , σ = 0 . 004 , N iter = 4 ), (f) SDF ( σ = 0 . 5 , μ = 

10 0 , ν = 60 0 , λ = 50 , steps = 3 ), (g) IGF ( σ = 1 . 1 , ε = 0 . 03 2 ), (h) SAF ( σ = 2 , σr = 0 . 03 , N iter = 6 ), (h) Our filter using BF ( σs = 4 , σr = 0 . 04 , N iter = 5 ). 

non-photorealistic rendering results. This is because smoothing 

small size features from an image and emphasising the overall 

image structures is helpful for human perception. Since the pro- 

posed approach preserves the low-contrast details, our abstraction 

results lead to a better overall result. 

In this experiment, we purposely tune the parameters of all 

filters to produce outputs such that they remove small-scale de- 

tails while retaining large-scale objects. Fig. 21 shows the non- 

photorealistic results using our filter, the region covariance filter 

(RCF) and the relative reductive regression filter (RRRF) [18] . The 



M. Al-nasrawi and G. Deng / Computers & Graphics 79 (2019) 81–100 97 

Fig. 20. A comparison of the structure-texture decomposition smoothing results for the “Flautist” image with a number of state-of-the-art algorithms. (a) Ground truth 

(GT), (b) Texture + ground truth, (c) RTV ( σ = 2 . 5 , λ = 0 . 015 , ε = 0 . 02 , N iter = 4 ), (d) RGF ( σr = 0 . 05 , σs = 3 . 9 , N iter = 5 ), (e) BTF ( k = 3 , N iter = 15 ), (f) STF ( σs = 1 , σr = 0 . 05 , σ = 

0 . 002 , N iter = 9 ), (g) SDF ( σ = 2 , μ = 200 , ν = 500 , λ = 200 , steps = 5 ), (h) IGF ( σ = 2 , ε = 0 . 03 2 ), (i) SAF ( σ = 2 . 4 , σr = 0 . 07 , N iter = 5 ), (j) Our filter using BF ( σs = 4 . 1 , σr = 

0 . 06 , N iter = 15 ). 

Fig. 21. A comparison of our image’s non-photorealistic results with different filtering methods. (a) Original image, (b) RCF ( k = 15 , r = 3 , σ = 0 . 09 , Model 1), (c) RRRF 

( σs = 5 , σr = 0 . 06 , N iter = 5 ), (e) Proposed ( σs = 4 , σr = 0 . 04 , N iter = 15 ). 

figure demonstrates that the image resulting from our filter pre- 

served the low-contrast features, such as the details in the clouds 

and grass, better than RCF and RRRF, as shown in Fig. 21 (e). It 

is also clearly seen that RCF and RRRF fail to smooth out the 

small-scale details, such as the details on the rock, as shown in 

Fig. 21 (c) and (d) (the red squares). In addition, the result obtained 

from RCF has a ghosting effect around the significant boundaries. 

On the other hand, although RRRF produces sharp edges, it also 

has irregular edge boundaries. 
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Fig. 22. Color pencil sketching results. 

Fig. 23. Content-aware image resizing in texture images. (a) Original image. (b) The 

image smoothed by the proposed approach. (c) and (d) show the seams to be elim- 

inated by the approach in [35] and the modified [35] by our algorithm, respectively. 

Our result in (f) is more visually appealing than in (e). 

Fig. 24. More content-aware image resizing results in texture images. (a) Original 

image. (b) The image smoothed by the proposed approach. (c) and (d) show the 

seams to be eliminated by the approach in [35] and the modified [35] by our algo- 

rithm, respectively. Our result in (f) is more visually appealing than in (e). 
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Table 4 

The quantitative evaluation of the structure-texture smoothing results using PSNR and SSIM for images 

in Fig. 20 . The PSNR and SSIM of the synthesized image (shown in Fig. 20 (b)) are 0.621 and 22.859 (dB), 

respectively. Results of the proposed algorithm are listed in the last column. 

Measure RTV RGF BTF STF SDF IGF SAF Proposed 

SSIM 0.891 0.880 0.894 0.881 0.872 0.896 0.885 0.911 

PSNR (dB) 26.322 24.788 25.463 24.730 23.640 25.771 24.925 27.774 

Fig. 25. Texture replacement results. (a) Original image. (b) The structure layer extracted by the proposed approach. (c) The resulting image after adding (b) to another 

texture image. 

4.3.3. Color pencil sketching 

Pencil sketching is a non-photorealistic transformation of a real 

image. The structure-texture decomposition result is used with 

other image information to achieve this effect. For example, gra- 

dients or edges can be added to the smoothed version of the orig- 

inal image to produce pencil-like or cartoon-like images. Lu et al. 

[34] manipulated image gradients to generate pencil sketching ef- 

fects. In the texture image, the pencil drawing can yield visually 

unappealing results due to the high-frequency oscillatory compo- 

nents. Therefore, we can pre-process the original image using the 

proposed algorithm to obtain a better result. Fig. 22 presents the 

pencil sketching effects using our filter and the approach in [34] . 

The figure demonstrates that the results from our filter are more 

visually pleasing and more abstract than the results obtained from 

the algorithm in [34] . 

4.3.4. Content-aware image resizing 

Seam carving is used in content-aware image resizing [35] . Ev- 

ery seam is generated by a connected path of pixels which have a 

low energy cost. The energy function is defined in terms of the 

gradient magnitude. Important objects in an image can be pro- 

tected by these seams after image resizing. In a texture image, 

applying content-aware image resizing directly might not produce 

visually appealing results because of the correlation between tex- 

tures and objects in the scene. More specifically, the existence of 

textures might lead to misleading seams carving. Therefore, some 

important content could be eliminated. To solve this problem, we 

apply the proposed structure-texture decomposition approach on 

the original image to alleviate the effect of textures prior to seam 

carving. The filtered version of the image is used as a guidance 

map for the original seam carving algorithm to produce the final 

results. 

For example, Fig. 23 shows three faces: left, middle and right. 

It can be clearly observed that most of the vertical seams pass 

through the left-hand side of the left face and the middle face 

in the scene which leads to unpredicted results, as shown in 

Fig. 23 (e). By using the proposed filter, many of the vertical seams 

no longer cross through the important details, rather they now tar- 

get the less important details such as the tiles in the background, 

as shown in Fig. 23 (d). This is due to using the smoothed image 

produced by our algorithm which leads to more satisfactory re- 

sults, as shown in Fig. 23 (f). 

Another example is shown in Fig. 24 . It can be seen in Fig. 24 (c) 

that the vertical seams are distributed randomly over the whole 

image without considering image objects. This leads to a distorted 

result after applying content-aware resizing, such as the noticeable 

distortion in the sticks as well as the rooster on the left-hand side 

of the image, as shown in Fig. 24 (e). On the other hand, after pro- 

cessing by our filter, although the vertical seams still pass through 

the roosters as in Fig. 24 (d), most of the vertical seams are in areas 

of unimportant repetitive details such as tiles in the background 

and some of the roosters’ feathers. This leads to a less distorted 

resized image, as shown in Fig. 24 (f). 

4.3.5. Texture editing 

Using the proposed method, we are able to decompose the 

highly-textured image into a structure layer and texture layer. We 

can simply replace the texture layer with another texture image. 

Thus, the texture components in the original image are replace by 

the new texture components. Fig. 25 illustrates an example. 

5. Conclusion 

In this paper, a new technique for structure-texture decompo- 

sition smoothing is introduced. The proposed method comprises 

two steps. A guidance image is first generated and the result is 

then processed by one of the guided edge-preserving filters such 

as the extended Bayesian model averaging filter (guided Bayesian 

model averaging (GBMA)), bilateral filter (BF), guided filter (GF), 

and domain transform filter (DTF). We compare the responses of 

GBMA, BF, GF, and DTF in areas of an image with texture and sig- 

nificant edges. We observe that the response of the proposed filter 

using the BF produces the best results among all filters tested. We 

also study an important issue such as guidance image generation, 

the stopping criterion for the iteration, and guided edge-preserving 

selection. The experiment results and comparisons show that in 

a wide range of applications, the proposed algorithm achieves 

competitive structure-texture decomposition smoothing results. In 

particular, the proposed filter has the best performance in the 

structure-texture decomposition for a low-contrast texture image. 
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