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ABSTRACT Wireless indoor localization is a significant challenge because of the noise generated by
building structures, electromagnetic fields, and distances between connected nodes inside a building. This
study compares two main localization methods: fingerprints (real and synthetic) and ranging schemes based
on the Received Signal Strength Indicator (RSSI) of the ZigBee network. We followed four steps for
the fingerprinting scheme. First, we obtained real data from the transceivers. Second, we computed the
path-loss exponent for each device. Third, we produced a synthetic fingerprint dataset. Finally, we used
three localization methods: k-nearest neighbor (KNN), multilayer perceptron (MLP), and long short-term
memory recurrent neural network (LSTM-RNN). We assessed the performance of the localization methods
by measuring their accuracy, precision, error-to-active area ratio, and installation difficulties. The results
show that the real fingerprint scheme has the best performance, but it requires more installation time. While
the synthetic fingerprint generation is based on the path-loss method that mixes the advantage of both
fingerprint and path-loss. Furthermore, we compared the proposed estimated path-loss with that of a state-
of-the-art method and demonstrated that the proposed method exhibits superior performance. These results
suggest that the proposed method is more precise and suitable for real datasets.

INDEX TERMS Indoor localization, multilayer perceptron (MLS), K-nearest neighbor (KNN), path-loss
exponent, RSSI fingerprints, received signal strength indicator (RSSI).

I. INTRODUCTION
The demand for location-based applications has increased
significantly with the increase in the number of wire-
lessly connected devices [1]. Acquiring an accurate location,
namely localization, is a central point in wide-scale appli-
cations such as smart homes [2], [3] industry [4], surveil-
lance [5], [6], monitoring and control for energy saving in
buildings [7], [8], tracking Alzheimer’s patients [9], and
elderly people fall detection alerts [10].

Localization estimates node-device coordinates (sensors,
smartphones, or IoT devices). Generally, localization is
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divided into outdoor and indoor positioning. Outdoor posi-
tioning employs a Global Positioning System(GPS) as an
optimum standard solution, which obtains an accurate posi-
tion within 3.5 meters [11]. However, the GPS approach is
inappropriate for indoor localization because of multipath
losses, line-of-sight challenges, high costs, and high-power
consumption [12].

However, indoor positioning usually demands localization
of the nodes within centimeter [13], [14], with the availability
of a line of sight, low cost, and low power consumption [15].
Therefore, researchers have focused on handling indoor
localization using commercial communication technologies
such as Bluetooth Low Energy (BLE) [16], ultrasound [17],
infrared [18], RFID [19], WIFI [20], and Zigbee [21] to
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satisfy the requirements referred to previously. Performing an
indoor localization system requires at least three anchors and
one movable device [22], [23].
According to network infrastructure, indoor localization

techniques can be divided into range-free [24] and range-
based [25] methods. In range-free localization, the corre-
sponding distance between the nodes is estimated via hop
counting. This method has been adopted in several studies.
However, the range-based method is the most realistic cause
for the nature of indoor environments. Range-based local-
ization estimates the locations of nodes that initially have
unknown positions in the network. It measures the variable
characteristics of electromagnetic waves between unknown
and reference or anchor nodes. Based on the variable char-
acteristics (amplitude, time, and phase), several ranging
schemes have been proposed, such as the Receiving Signal
Strength Indicator (RSSI) [26], Time of Arrival (TOA) [27],
TimeDifference of Arrival (TDoA) [28], andAngle of Arrival
(AoA) [29]. AoA can be accurately performed using an array
of antennas and additional devices.

ToA and TDoA require accurate clock synchronization
for successful performance. However, it requires complex
methods to obtain these conditions for real-life applications.

However, RSSI does not require such conditions, where
it measures the decay of the signal’s power with respect
to distance [30]. This approach is considered more suitable
for measuring distance without use of additional devices.
RSSI can be performed in range-based and map-based model
localization (fingerprint-based). The former can estimate
the distance between transmitter and receiver by measur-
ing the attenuation of the transmitted signal with respect
to the distance, which cannot be calculated correctly with-
out prior knowledge of the exact path-loss model of indoor
environment characteristics. These characteristics include
noise, attenuation, distortion, fading, multipath loss, and
interference. Therefore, range-based model localization sys-
tems exhibit significant localization errors. The fingerprint
approach consists of two phases: offline and online. In the
offline phase, a fingerprint map is constructed by dividing
the area into small pieces with known coordinates, and the
values of the RSSI are then captured from several access
points (APs) in each coordinate to create a fingerprint. The
number of fingerprints can be increased to obtain accurate
localization. In the online phase, the real position of the
node device is calculated using a dataset generated by the
localization algorithm. The localization algorithm operates
by converting the RSSI values to distance, where it suffers
from path-loss impairments. Some studies have been done to
overcome this problem, in [31] the authors propose averag-
ing the time-bound collected fingerprint and applying three
preprocessing method named instantaneous, averaging and
weighted averaging to train cross-correlation algorithm with
online data; where the maximum correlation results use to
make prediction. Due to their quick learning capability, ease
of use, and flexible modeling, machine learning algorithms
have been proposed to estimate the position of targeted nodes,

such as k-nearest neighbor (KNN) [32], recurrent neural net-
work (RNN) [33], and multilayer perceptron (MLP) [34].
Motivated by the above challenges, we proposed map-

based model localization (fingerprint-based) via MLP utiliz-
ing Zigbee CC2420.

Our experimental environment was a laboratory with a
5.7mwidth and 8.2m length, and the total area was 46.74m2,
in which there were two tables and six chairs. The entire lab
is divided into a grid with 111 pieces with dimensions of
0.6 m × 0.6 m; At the vertex of a grid, we take our fingerprint
and the distance from nearest points to anchors was 0.63 m,
while the distance from the wall to its nearest point was
0.45 m.

We first collected three RSSI at 111 fingerprints; The value
of each RSSI was obtained by averaging over 500 reads sam-
pled with 2 ms intervals. These datasets were collected for
three different scenarios with different levels of interference.
The interference depends on the number of transmitters and
persons inside the lab.

In the first scenario, we installed three receivers as anchors
to collect the dataset from one movable transmitter, and
two persons were present in the testbench. In the second
scenario, three anchor transmitters propagated their signal
to one movable receiver, and four persons were presented
in the testbench. In the third scenario, eleven transmitters
were installed in the lab, but only three anchors were tuned
with one movable receiver, and the number of persons was
variable, two, three and eight persons. All the experiences
were done in themorning. Section III-c hasmore details about
our setup.

We also calculated the path-loss exponent for each trans-
mitter. Then, we generated a new fingerprint based on the
calculated path-loss exponent.We compared the performance
of the proposed approach with that of the trilateration, KNN,
and RNN methods in terms of accuracy and precision. For
training the algorithm, our offline fingerprints are divided
to 70% for training, 30% for testing and the 10 online test
points are used for validation. According to the collected real
dataset, MLP performed better than the other methods did.
Our contributions are summarized as follows:

1) Collection of a unique dataset for our laboratory (SysNet
lab).

We collect dataset in the entire of the SysNet lab consid-
ering three interference levels based of the signal existing in
lab and the number of persons. The details of scenarios are
presented as following: (i) first scenario, low interference,
where has one movable transmitter and three anchors receiver
with two persons presented in the lab; (ii) second scenario,
medium interference, where we use three anchors transmitter
and one movable receiver and four persons were presented in
the lab, (iii) third scenario, high interference, eleven trans-
mitters are presented in the lab but only three anchors of
them are tuned with one movable receiver, and variable
number of persons. To overcome the RSSI fluctuation prob-
lem, we take the average over 500 reads for each RSSI
fingerprints.
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2) Calculation of the path-loss expands for each anchor.
In the literature, the path-loss exponent was calculated for

the technology globally, for example, the path-loss exponent
for Wi-Fi in such an environment. In this work, we calculate
the path-loss exponent for each device separately; because
during the experience, we found that the devices in the
same technology have different RSSI values. Furthermore,
themethod that we used to calculate the path-loss differs from
the other studies.

3) Generation of new fingerprints corresponding to the
path-loss calculated.

We observed that the fingerprinting process is intensive
and takes more time than the path-loss method while col-
lecting the fingerprints. Therefore, we suggested to generate
synthetic fingerprint automatically using path-loss equation.
The path-loss equation has five variables (RSSId, d, RSSIdr,
dr and n). We set the path-loss exponent (n), reference point
distance(dr) and RSSIdr, then we generated the RSSId for
different distances.

4) Extensive experiments with averaged readings were
performed to accurately calculate the RSSI from each anchor.

Since the RSSI has high fluctuation and suffers from
any variation in the environment, we take the average over
500 reads sampled with 2 ms intervals.

5) Propose a new deterministic metric to calculate the error
in the active area.

Unlike outdoors, the volume and the size are different from
one building to another in the indoor, and the existing evalu-
ation metrics such as RMSE and variance do not consider the
testbench extent; for this reason, we propose a new metric
that considers the area of interest called Error to Active Area
(E/A) ratio in percent. In this metric calculation, we divide
the sum of the RMSE by the sum of the distance between
test points and anchors. The desired value of this metric is
zero percent. Section IV-A. contains more details about this
metric.

II. RELATED WORK
Accuracy, precision, complexity, and installation time are
important factors in building an indoor localization system,
and they are directly related to the location estimation tech-
nique. In the literature, the two techniques for the RSSI-based
method include range-based and fingerprinting schemes [35].
In this study, we divide the discussion of the previousmethods
into fingerprinting, range-based, and synthetic fingerprinting
approaches. In fingerprinting localization, the environment
is divided into small areas. The RSSI from three or more
anchors are collected for each small area to create a database
containing the RSSIs and corresponding locations [36]. This
method is not affected by the anchor’s coordinates or envi-
ronmental characteristics, as long as they do not change after
database generation.

Usually, pattern recognition or clustering algorithms are
applied to estimate the target location to find the dataset fin-
gerprint closest to the target RSSI [37]. Sadowski et al. [38]
proposed that fingerprint-based indoor localization relies on

Wi-Fi, BLE, and ZigBee. They compared three well-known
localization algorithms, namely KNN, Naive Bayes, and tri-
lateration. Three experimental scenarios were tested: low,
medium, and high interference. Regarding the technologies,
the authors declare that ‘‘the system calculation is not affected
significantly by the wireless technology utilized’’. Regarding
the algorithm, the best performance was achieved with KNN
followed byNaive Bayes, and the trilateration appears to have
the worst overall performance.

Uradzinski et al. proposed the Zigbee Wireless Tech-
nology to perform indoor localization based on RSSI fin-
gerprinting [39]. The authors filtered out the interference
from the fingerprint database to improve the localization
accuracy. To estimate position, they tested three localiza-
tion algorithms: KNN, weighted KNN, and Bayesian. The
results show that the filtered fingerprints outperform natural
fingerprints.

V. Bianchi et al. [2] proposed the ZigBee model to per-
form indoor localization based on the fingerprint method.
The authors propose room-level localization with a thresh-
old algorithm and estimate the location of device that has
interacted with already installed house devices. If there were
more than one person in the environment, the localization
estimation gives priority to the more interactive device. The
testbench was two rooms and one corridor, the rooms’ sizes
were equal to 40 m2. In rooms, A and B, 25 fingerprints were
gathered, while in the corridor five fingerprints were col-
lected. The authors measure the accuracy of the system by the
ratio of the tested point located in the correct testbench; they
obtained results with 98% sensitivity and 96% specificity.

Three or more known location anchors are required for
range-based localization. The distance between the target
and anchors was estimated using a radio path-loss model
with the RSSI measured between the target and anchors.
Trilateration is a widespread algorithm used to determine the
location of target nodes [25]. Earlier studies have primarily
attempted to reduce localization errors. The following two
references adopt Zigbee technology, RSSI, and trilateration.
Reference [40] perform a positioning system for surveillance
in a mental health hospital. Owing to its low power, wide
range, and high accuracy, the Zigbee model was treated as
an optimum solution for this task.

Reference [41] determined the influence of the multipath
problem on the indoor and outdoor localization accuracy. The
accuracy was below one meter outdoors, while the indoors
were highly diverse, with significant fluctuations in the RSSI
readings owing to multipath effects.

A. Booranawong et al. [21] used four ZigBee reference
nodes to perform RSSI based indoor localization with multi-
lateration algorithm. The accuracy of multilateration method
is improved by take the boundary into consideration as
well as selection the zone and estimation of the position.
Two zones have been tested in this work a 4 m × 4 m
lab room and a 22 m × 9.3 m corridor. Theirs estimation
errors were 0.682 m for the lab room and 1.776 m for the
corridor.
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A. Booranawong et al. [42] used the ZigBee module to
compare min-max and trilateration methods in the indoor
environment. They studied the human presence in two cases
with and without human movement. The authors declare
that both methods have equal performance in the absent of
human movement, while the min-max method perform better
for the case of human movement. Also, they propose filter-
ing the RSSI to reduce the variation. After applying the filter,
the localization error decreases and the trilateration performs
better. Their testbench was a faculty parking with 3.6 m ×

6.2 m dimension.
Although the fingerprint method is highly accurate, it is

time-consuming and requires challenging installation. There-
fore, some studies have proposed generating fingerprints
depending on the path-loss equation, and then applying
machine learning models to estimate the location to obtain
good accuracy and address the problem of installation time
and labor. In [43], an enhanced fingerprint-based localization
methodwas suggested to use a path-loss model for fingerprint
creation and positioning. The authors proposed a WLAN
path-loss model for fingerprint generation with two schemes:
dual-scanned fingerprint localization (DFL) and path-loss-
based fingerprint localization (PFL). The PFL was more
precise than the standard fingerprinting method; however,
some tested points were outside the test bench boundary,
making the system unreliable. To overcome the unreliable
problem, they proposed a DFL that can be realized in two
steps to scan first, using the ordinary path-loss equation
model, and the second with PFL. The proposed value of
the path-loss exponent was fixed at 4, and the associated
standard deviation was 5dB. The results show that DFL out-
performs the overall results. In [44], the authors proposed
a semi-simulated method using Wi-Fi technology to eval-
uate the cosine similarity of directions to different APs to
increase the number of fingerprints inside the test bench
environment by generating dense fingerprints from actual
spatial RSSI data. The experimental results indicated that
the semi-simulated method performed closely to the actual
fingerprints. Usually, the performance criteria of any local-
ization system can be summarized as accurate location, low
complexity, and rapid installation. As such, the fingerprinting
method suffers from a rigid environment, where any change
in the obstacle layout and number of connected nodes leads
to the regeneration of the dataset. The range-based method
suffers from the RSSI fluctuation with time and the not exact
path-loss exponent calculation, making the system inaccu-
rate. In this study, we make a trade-off among the above
suggestions. Fingerprints were collected from each specific
point in the laboratory room to create a real fingerprint dataset
and test points, followed by comparing three unsupervised
machine learning methods (KNN, MLP, and RNN). Based
on the real dataset, we calculated the path-loss exponent for
each anchor by assuming that the nearest fingerprint of each
anchor is a reference point with high power, and the farthest
fingerprint has the lowest power. Moreover, we generated

synthetic datasets from the path-loss exponent calculated in
the last step. Finally, we compared the real dataset, synthetic
dataset, and trilateration in terms of accuracy and precision.

III. METHODOLOGY
The localization process divides into two kinds [45]:

•Device-based localization: The target uses anchor node
information to find its location, and the primary use of this
type of localization is navigation.

•Monitor-based localization: The target sends position
information to a set of anchor nodes. This type of system is
primarily used for user tracking.

Each localization system requires four devices to perform
positioning or tracking operations for all methods applied in
this study. These devices can be either three transmitters and
one receiver group, in this case, the target finds its location
for navigation, and it can send the information to an external
center fusion for tracking, or these four devices could be three
receivers and one transmitter, in which case the receivers
send the location information to an external center fusion for
monitoring, and can also send the information to the target
for navigation.

A. EXPERIMENT ENVIRONMENT
All experiments were effectuated inside the SysNet lab (sin-
gle room) at the Shahid Chamran University of Ahvaz as
illustrated in Figure 1b., the lab’s width and length are 5.7 m
and 8.2 m, respectively, and the total area is 46.74 m2.
We divided the lab area into a grid of 9 columns and 13 rows,
where each column-row intersection is a specific fingerprint
(denoted as Oi, i = 1, 2, 3, . . . .., 111). Note that six fin-
gerprints were neglected because of the slope in one of the
corners of the laboratory (depicted with a black triangle in
Figure 1a.).
For each fingerprint (Oi), we obtained three RSSIi,j from

three transceivers TRj (i.e., j = 1, 2, 3) located on a dedicated
corner in the lab. The setting is shown in Figure 1a.
The lab has random Wi-Fi signals acting as attenuation

sources that affect the calculated RSSI. Each detected RSSI
value around a specific fingerprint varies. As such, we esti-
mated the mean value from the R reads for RSSIi,j as follows:

RSSIi,j =

∑R
k=1 RSSIk
R

(1)

where k = 1, 2, 3, . . . ., R, and R = 500. We randomly
measured the signal strength in x Test Points (TP) (x =1,
2, . . . ., 10), and marked these points with a red cross sign (x)
in Figure 1a.

B. EXPERIMENTAL SCENARIOS
In this section, we explain the details of the experimental
scenarios and compare them with state-of-the-art methods.
The interference is depending on the number of transmitters
and the number of persons presented inside the testbench.
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FIGURE 1. Experimental environment: (a) Actual and (b) General fingerprint representation.

1) FIRST SCENARIO
In this scenario, the environment has low interference, and
we installed three receivers as an anchor and one movable
transmitter. The movable transmitter propagates a signal at
each fingerprint, and the three anchor receivers collect the
RSSI. The collected RSSI at each anchor is the mean of the
R reads. In addition, two persons have been presented in
the environment.

2) SECOND SCENARIO
In this scenario, the environment has medium interference,
and we utilized three transmitters as an anchor and one mov-
able node device as a receiver at a time.

Three RSSI were collected for each fingerprint. In addi-
tion, four persons were presented in environment two of them
are sit and two other moves around.

3) THIRD SCENARIO
In this scenario, the environment has high interference, where
we utilized ten devices as transmitters and one node device
as a receiver. Three of these ten transmitters were tuned to
match the receiver frequency, and the remaining seven were
considered noise sources. We collected three RSSI from the
anchor points, and considered each fingerprint.

We measured the RSSI at each anchor point for all the
fingerprints and test points. In this scenario, the number of
persons were variable some time two, three and eight.

C. PROPOSED METHOD
This section presents the proposed framework, dataset gener-
ation, and experimental environment. The block diagram in
Figure 2. describes the methods presented in this study.

FIGURE 2. Proposed methods.

1) FINGERPRINT METHOD
Localization using a fingerprinting technique requires offline
and online phases, which consist of three steps: (i) dividing
the environment into 111 small pieces with dimensions of
0.6 m × 0.6 m; we take our fingerprint at the vertex of
a grid, and the distance for nearest points to anchors was
0.63 m and the distance from the wall to its nearest point
was 0.45 m. We sampled the RSSI 500 times with a 2 ms
interval. (ii) reading the RSSI detected from each anchor
at one point of each specific transceiver and (iii) creating a
database containing each point’s coordinates and three RSSI
values. All the experiences were done in the morning. Each
point in the database can be identified by either geographic
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coordinates or RSSI value in the online phase, and the RSSI
values of the unknown position are compared with the dataset
using an algorithm to find the most likely matched RSSI
values. In localization systems, fingerprinting techniques are
highly accurate RSSI-based methods. However, mapping an
environment may require a lot of time and effort [45]. Mul-
tipath effects, reflections, and obstacles significantly affect
the RSSI values. The database must be regenerated if the
environment undergoes any change. Algorithms used with
fingerprinting to perform indoor localization include the
MLP [34], KNN [34], [46], [47], and Long Short-TermMem-
ory Recurrent Neural Network (LSTM-RNN) [33]. To train
the algorithms, the dataset is divided to 70% around 78 fin-
gerprints for training, 30% around 33 fingerprints for testing,
and ten online test points for validation.

The MLP that achieved the best performance in this work
for all scenarios with a real dataset has an input layer with
three neurons, one hidden layer, four neurons, an output layer
with two neurons, and a tangent sigmoid activation function.
The optimum LSTM-RNN chosen for this work consists of
four layers: three neuron sequence input layers, one LSTM
with 20 neuron layers, a fully connected layer with two
neurons, and regression output. The most appropriate KNN
that achieved the best performance overall utilized in this
study was the four nearest neighbors and Euclidean distance
calculation.

2) RSSI RANGE-BASED METHOD
The RSSI range-based approach is based on distance esti-
mates. Signal strength measurements at the receiver and
reference points (anchor or a point close to the anchor) were
used to compute the distance between the transmitter and
receiver. Subsequently, the path-loss equation was applied
for the distance calculation. As the distance between the
transmitter and receiver increased, the power of the signal
strength decreased. Once the distance between the anchors
and target is calculated, a localization algorithm must be
used to determine the position of the target. Localization is
not performed unless the position of the anchors is known.
Owing to the former procedure, the RSSI-based method
can be considered simpler than the fingerprinting method.
Lateration is a localization algorithm widely adopted in the
literature. The name of this technique is changed based on
the number of anchors used. Typically, it operates with at
least three anchors; in this case, it is called trilateration
[25], [48], [49].When more than three anchors are used,
this is called multi-lateration [21], [50], [51]. In this study,
trilateration was adopted.

D. PATH-LOSS EXPONENT CALCULATION
The path-loss exponent is a crucial part of the path-loss
equation, which is associated with the range-based method
for estimating the position of wireless devices. Here, the
path-loss exponent is calculated bymeasuring the RSSI at two
points inside the test bench for each transceiver, the nearest

FIGURE 3. ZigBee module.

point to the transceiver RSSImax and the furthest point from
the transceiver RSSImin, and substituting these real values in
the path-loss equation to extract the path-loss exponent. In our
setup, we measure the RSSI from RF pins of CC2420 chip
which has RSSI built-in register with value of RSSIVAL [52].
The RSS at RF pins is determined as follows:

RSS = RSSIVAL + RSSIOFFSET (2)

where experimental value of RSSIOFFSET is approximately
−45 dBm. The RSSI has proportional relation with power,
and as the distance increases, the power decreases. Thus,
the path-loss exponent, n, can be computed by substituting
RSSImax and RSSImin in the path-loss equation developed
in [21]:

RSSImin = RSSImax − 10.n.log10

(
dmax
dmin

)
(3)

or

n =
RSSImax − RSSImin

10.log10
(
dmax
dmin

) (4)

where, the RSSImin obtained at distance dmax . and RSSImax
measured at a reference distance dmin. We repeat the path-loss
exponent calculation for each access point, because we noted
that practically the RSSI is different for each access point so
the path-loss exponent will also be different.

E. DATASET GENERATION
The datasets utilized in this study were classified as real
and synthetic datasets. The dataset generally consists of five
values, including a fixed coordinate for each fingerprint O(xi,
yi) and RSSIi,j. The real dataset is obtained directly from
each fingerprint (Oi) for each TRj. Because the coordinate of
each fingerprint is fixed for both real and synthetic datasets,
we calculated the distance between Oi,j to synthesize a
new dataset concerning the nearest fingerprint for each TRj,
namely the reference fingerprint Or, where (r = 1, 9, 111).
The equation 3 can be represented as follows [42]:

RSSIi,j = RSSIr,j − 10.n.log10

(
di,j
dr,j

)
(5)
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where RSSIr,j is the measured signal at Or, n is the path-loss
exponent that calculated previously for each link, di,j is the
distance between Oi,j and TRj, and, dr,j is the distance
between Or,j and TRj. In the literature, dr,j usually equals
one. However, to ensure the accuracy in the preparation of
our dataset measurement, we selected the nearest Or (e.g., 1,
9, 111) as the actual distance (0.63 m).

F. ZIGBEE MODULE
This section presents a general overview of the ZigBee Mod-
ule used in this study. The ZigBee technology allows users to
create mesh networks with proper specifications, including
efficient power and low cost. The ZigBee communication
protocol employs the IEEE 802.15.4 standard to build a per-
sonal area network with a small-sized antenna [53]. We used
a CC2420 transceiver-wired antenna to build a ZigBee net-
work, as shown in Figure 3.
On the left, the hardware module and on the right, the

schematic presented in [54].
The CC2420 module developed by Chipcon [52] can mea-

sure the received signal strength via the RSSI parameter
indicator, which can be used in our experiment. The CC2420
uses frequency shift keying modulation to send information,
and on its physical layer can use the ZigBee protocol version
1 or IEEE 802.15.4 as theMAC layer [55]. This module sends
and receives data using the 2.4 GHz frequency band with
a transfer rate of 250 kbps. Other features of CC2420 that
make it efficient include low cost, high performance, high
data transfer speed, multi-channel communication capability,
communication via the SPI protocol with the processor, and
low power consumption [54].

IV. EXPERIMENT RESULT AND DISCUSSION
A. EXPERIMENTAL RESULTS
This section presents the experimental results. The perfor-
mance of the measuring system is evaluated in terms of the
root mean square of the distance error for all test points
(RMSE) [56], variance of error (σ2) [57], and cumulative
distribution function (CDF) [58].

Because the indoor environments change in form, area, and
allocation of each anchor, we propose a new metric, namely
the Error to Active area ratio (E/A), which estimates the mean
error of all the involved TP in the area of interest, and can be
calculated as follows:

E
A

=
1
TP

TP∑
x=1

RMSEx
d(TR1+TR2+TR3)x

∗100% (6)

where d(TR1+TR2+TR3) is the sum of the distances from each
transceiver to each test point. Therefore, we considered the
entire active area in the error calculations. In the fingerprints
tested in this work, as shown in Table 1, there are two types of
datasets for training the proposed algorithms: the real dataset
collected from the test bench directly, which will be called
real fingerprints, and a synthetic dataset built based on the
path-loss equation called synthetic dataset.

According to this classification, the algorithms trainedwith
the real dataset will be named (MLP-real, KNN-real, and
RNN-real) while the algorithms trained with synthetic dataset
will be named (MLP-syn, KNN-syn, and RNN-syn) Figure 4.
shows the cumulative errors of the techniques used for each
scenario. In contrast, Table 1 summarizes the system behavior
for all scenarios and techniques. The CDF results show that
the MLP-real has the best overall performance scenarios
compared with the other techniques because it reaches 100%
at the shortest distance for all test points. Figure 4a. shows
the CDF for the first scenario. In this figure, for the entire
time response, the first best method is MLP-real with 1.7m
error, the second is KNN-real with 2m, the third is RNN-syn
with 2.3m, the fourth is RNN-real with 2.6m, the fifth is
KNN-syn with 3.5m, the sixth is MLP-syn with 4.7m and the
seventh is Trilateration with 5.1m. At the same time, KNN-
real appears to have the best performance in 90% of the time
with a 1.5m error, followed by MLP-real with a 1.6m error,
and RNN-syn with a 2.25m error. The RNN-real comes in
the fourth position with a 2.5m error. The MLP-syn had a
3.1m error, followed by KNN-syn with a 3.25m error, and
finally the Trilateration had a 4.6m error. Figure 4b. shows
the CDF for the second scenario. In full time, the KNN-real
and MLP-real share the best accuracy of the other algorithm
with 2.5m error followed by RNN-real with 2.6m error, not
far from it, RNN-syn with 2.7m error, followed by KNN-syn
with 3.5m error. MLP-real had a 5.2m error. At the same
time, trilateration has the worst performance with a 6.5m
error. Regarding 90% of the time, KNN-real is the best with
a 2m error. Not far from this, MLP-real and RNN-syn share
the position with a 2.2m error, pursued by RNN-real with a
2.5m error. KNN-syn and Trilateration share the last position
with a 3m error. The CDF for the third scenario is shown in
Figure 4c. In 100% of time, the MLP-real appears with the
lowest error of 2.2m, while KNN-real and RNN-real share the
second position with 2.5m error, followed by RNN- syn with
3.1m error, not far from it, MLP-syn with 3.2m error, KNN-
syn obtained the fifth position with 3.5m error and in the last
position is the Trilateration with 5.1m error. The 90% of time
of this scenario is arranged according to the error as follows
RNN-real with 1.7m, MLP-real 1.9m, KNN- syn with 2m,
KNN-real and RNN-syn with 2.2m, MLP-syn with 3.1m, and
in the last Trilateration with 3.5m. Table 1 shows the RMSE,
variance, and E/A ratio for all scenarios and techniques used
in this work. From the experimental results, MLP-real pro-
duced the best overall performance. The estimate computed
using KNN-real contrasted the actual receiver by 1.2732m
with a calculated variance of 0.6177m, and E/A was 8.19%
for all scenarios. Concerning the training dataset, MLP had
the best accuracy for each scenario when the real dataset was
used for training. Simultaneously, the RNN achieved the best
performance when trained with the synthetic dataset for the
first and second scenarios. Simultaneously, KNNwas the best
in the third scenario. Concerning each scenario, in the first
scenario, the best performance was achieved by MLP-real,
which had an RMSE value of 0.9280m with a variance of
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FIGURE 4. CDF response: (a) First scenario, (b) Second scenario and (c) Third scenario.

TABLE 1. Accuracy and precision of each scenario.

0.3741m and E/A of 5.97%. The second-best algorithm is
KNN-real. It achieved an RMSE of 0.9525m, a variance of
0.1970m, and an E/A of 6.13%. The third-best algorithm is
RNN-syn. It achieved an RMSE of 1.2639m, a variance of
0.4719m, and an E/A of 8.13%. The fourth-best algorithm
is KNN-syn with 1.3319m of RMSE, 1.0826m of variance,
and 8.6% of E/A. The fifth-best algorithm was RNN-real
with 1.4606m of RMSE, 0.6794m of variance, and 9.39% of
E/A. The sixth-best algorithm was MLP-syn with 1.9843m
of RMSE, 1.8332m of variance, and 12.76% of E/A. The
algorithm with the worst performance was Trilateration with
2.1557m of RMSE, 2.6544m of variance, and 13.86% of E/A.
In the second scenario, MLP-real had the best algorithm with
RMSE of 1.0982mwith a variance of 0.6246m, and E/A equal
to 7.06%, followed by KNN-real, with 1.1497m of RMSE,
0.3187m of variance and E/A of 7.39%, next to RNN-real
with 1.3553m of RMSE, 0.764m of variance and E/A of
8.71%. Consequently, RNN-syn with 1.4579m, 0.6075m of

variance, and an E/A of 9.37 %. Subsequently, KNN-syn
with 1.6698m, 0.7746m of variance, and E/A of 10.73%. The
MLP-syn with 1.9955m, 1.5456m of variance, and E/A of
12.83%. The last is Trilateration with 2.1957m of RMSE,
2.6544m of variance, and E/A of 13.86%. In the third sce-
nario, the first position of accuracy wasMLP-real. It’s RMSE
was 1.0990m, with a variance of 0.5191m and an E/A of
7.07%. The algorithm in the second position was KNN-real,
with an RMSE of 1.2265m, variance of 0.4731m, and E/A of
8.42%. The algorithm in the third position was KNN-syn; its
RMSE was 1.31m, it had variance of 0.8611m, and its E/A
was 7.89%. The algorithm in the fourth position was RNN-
real; its RMSEwas 1.347m, its variance was 0.3186m, and its
E/Awas 8.67%. The algorithm in the fifth position was RNN-
syn, its RMSE was 1.4791m, its variance was 0.6031m, and
its E/A was 9.51%. The algorithm in the sixth position was
MLP-syn, its RMSEwas 1.7121m, its variance was 0.8308m,
and its E/A was 11.01%. The algorithm in the last position
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TABLE 2. Classification of algorithm according the nearest estimation for
first scenario.

TABLE 3. Classification of algorithm according the nearest estimation for
second scenario.

was Trilateration; its RMSE was 2.1288m, its variance was
2.1534m, and its E/A was 13.69%. For better presenting the
results, we classify the algorithms depending on the number
of estimated points nearest to ground truth points. Five cases
are taken into consideration in the classification including
the number of points that lie in an area less than one square
meter in both coordinates, the number of areas that lie in
less than 1.5 square meters, the number of estimated points
that lie far from ground truth by two square meters or less
and the number of estimated points that lie in more than two
meters finally the number of points that lie out of testbench.
Tables 2, 3, and 4 classify the localization algorithm for the
first, second, and third scenarios, respectively.

B. DISCUSSION
As demonstrated by the experimental results, when compar-
ing various indoor localization algorithms in specific envi-
ronments, the algorithms trained using the real dataset had
the lowest RMSE and variance. It is essential to mention that
low RMSE and variance imply high accuracy and precision,
respectively. MLP was the best overall for the three scenar-
ios tested. The results are expected because fingerprinting
techniques can compute the location of the device based on
the real RSSI collected directly from the test bench. Despite
the high accuracy of the real fingerprint method, it suffers
from limitations, such as installation costs. The estimated
RSSIs must exist inside the training dataset, and the change
in the number of anchors or environment must recreate the
dataset and retrain the algorithms. By contrast, trilateration

TABLE 4. Classification of algorithm according the nearest estimation for
third scenario.

TABLE 5. Utilization reference dataset.

TABLE 6. Utilization our dataset.

did not suffer from such limitations. It can estimate any
possible location by knowing the transceiver’s position and
the environment path-loss; however, it has poor accuracy and
precision. The dataset generation method exhibited moderate
accuracy. Its installation is as easy as trilateration and needs
to know the coordinates of the anchor and create a dataset
for training the algorithms. However, all of these issues are
more straightforward than the laborious process of fingerprint
installation time and improvement in accuracy. Table 2, 3 and
4 classify the localization algorithm according to the nearest
distance to the ground truth test point. Table 2 illustrates the
classification of algorithm of first scenario. In this table we
remark that the best algorithm in this scenario was MLP that
trained by real dataset; it can estimate 8 points in 1 m2 around
the ground truth and two point less than 1.5 m2 which mean
that algorithm can estimate 80% of point in less than on meter
distance while KNN is has 70% of its estimation in less than
one meter of estimation.

In table 2, we remark that the trilateration and MLP-syn
have some points outside the boundary of the test bench
and near each other, which does not produce an accurate
estimation, and the MLP has detected the path-loss equation.

Regarding the algorithm used with the fingerprint method,
TheMLP and RNN algorithms generate a fixed infrastructure
after training to operate on specific data. Using this method
with other data is impossible, as it produces a non-flex sys-
tem. Simultaneously, the KNN retrained itself with every
run, passing through the data and computing the Euclidean
distance between the test point coordinates and all points
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in the dataset, and the lowest k point distances averaged
to estimate the test point location. One of the advantages
of KNN is that it is easy to add and remove anchors and
change the environment, whereas increasing the number of
fingerprints and anchors requires more computation time for
every run of the KNN algorithm.

C. COMPARING THE PATH-LOSS EXPONENT
CALCULATION METHODS
The path-loss exponent is a substantial part of the path-
loss equation. The performance of localization by lateration
improves with a more exact value of the path-loss exponent.
This section compares the proposed method explained above
and the curve fitting method presented in [46], [47], [59],
which calculates the path-loss exponent for the environment
depending on a fixed distance and reads the RSSI at some
points to draw a curve used to extract the path-loss expo-
nent. We compared our results with the curve fitting method
explained in [60]. In brief, the authors of [60] placed the
transmitter and receiver separated by 5 meters. To apply the
logarithmic fitting method, they divided the 5 meters into two
parts. Part A is one meter divided into nine points separated
by 0.1 meters. Part B is four meters divided into eight points
separated linearly by 0.5 meters. Subsequently, the data is
collected and a curve fitting technique is used to extract the
approximate value of the path-loss model variables.

The comparison was made in terms of accuracy and pre-
cision in two steps: (i) applying the two methods to scenario
one from the dataset presented in [61] and also used in [38].
This dataset has utilized three technologies Wi-Fi, BLE and
ZigBee. As illustrated in Table 5; and (ii) applying the two
methods to our dataset, as shown in Table 6.
As illustrated in the Table 5 and 6, the proposed method of

calculating the path-loss exponent using two reference points
and the path-loss for each link outperforms the curve-fitting
method. Remarkably, it is possible to calculate the path-loss
for the environment for a technology that consumes high
power (Wi-Fi) because it appears near the accuracy of our
method. According to the results, the first scenario in our
dataset appears to have acceptable accuracy when using the
curve fitting method.

V. CONCLUSION
This study examines four This study examines four localiza-
tion techniques, KNN, MLP, LSTM-RNN, and trilateration,
to perform indoor localization tasks. The criteria for com-
paring these techniques are accuracy, precision, and distance
error-to-coverage area ratio. In the first step, we collected real
fingerprints from the site of interest to perform an indoor
localization system based on the mapping method. In the
second step, to overcome the problems of installation time
and labor of the fingerprint method, we generate fingerprints
using the path-loss equation. A single laboratory room with
three interference levels was used to conduct the experiments.

The best results were obtained using real fingerprints, syn-
thetic fingerprints, and ranging methods. The real fingerprint

method was best than the other method due to the data col-
lected in the actual environment and compared with the real
test point by consequence it will be the best. The synthetic
fingerprint is based on the path-loss exponent of each link but
the algorithm compares online RSSI with the offline 111 pre-
saved fingerprints.

Concerning the localization algorithms, the results demon-
strated that the accuracy obtained from best to worse was
MLP (single hidden layer and four neurons and tangent
sigmoid activation function), KNN(k=4), RNN-LSTM (with
twenty hidden neurons), and trilateration, respectively. The
MLP has a nonlinear (activation function) part in each neu-
ron which can detect the mathematical model of the indoor
environment best than the KNN which contains only the
linear Euclidean mathematical model that can perform better
with synthetic data. For the LSTM, this kind of algorithm
considers sequential data which appeared not very useful with
the RSSI-based system. The trilateration calculates only one
time with the path-loss equation that affects highly by the
environment. The experimental results provided an indicator
for selecting a suitable indoor localization system.
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